PerceptNet: Learning perceptual similarity of haptic textures in presence of unorderable triplets

Priyadarshini<sup>1</sup>, Siddhartha Chaudhuri<sup>1,2</sup>, and Subhasis Chaudhuri<sup>1</sup>

<sup>1</sup>IIT Bombay, <sup>2</sup>Adobe Research

**IEEE WHC 2019** 



July 10, 2019

**Goal** – To model perceptual dissimilarity between haptics textures

#### **Important aspects**

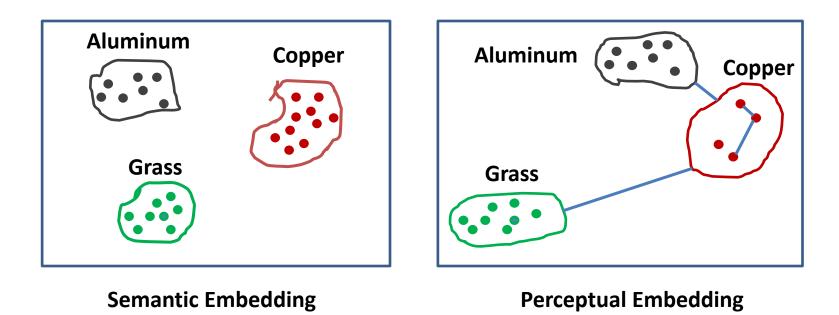
- Incorporate human notion of perceptual dissimilarity
- Model wide range of perceptual dissimilarity (highly similar to highly dissimilar)
- Embed new signals without retraining the model from scratch







## Key Idea 1



# Objective is to preserve human perceived relative dissimilarity between clusters

## Key Idea 2

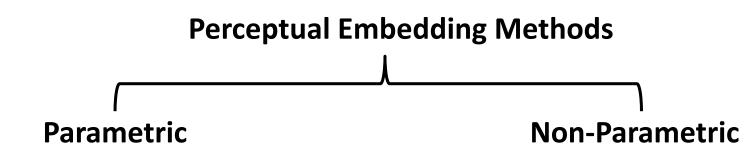


High-margin Triplets

Low-margin Triplets

Low-margin triplets are informative in modeling perceptual dissimilarity in entirety





- Allows out-of-sample extension
  [1, 2,3]
- Can incorporate low-margin triplets
- Can be formulated in terms of relative as well as quantitative similarity [1, 2, 3]

- Does not work on new sample [4, 5, 6]
- Does not incorporate low-margin triplets [4, 5, 6]
- Typically formulated in terms of quantitative dissimilarity [4, 5]

1-Richard et al. CVPR2018, 2- Brian et al. JMLR2011, 3- Rui et al. ICASSP 2017, 4-Enriqz et al.ICMI 2006, 5-Sameer et al. AISTATS 2007, 6-Lauren et al. IWMLSP 2012

## Perceptual Embedding of Haptic Texture

## **Related work**

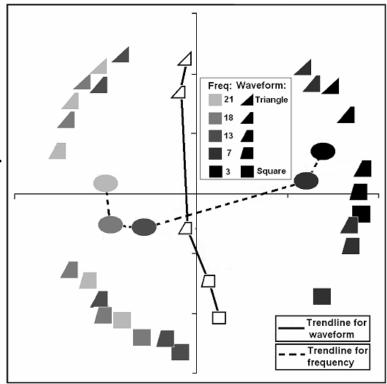
Goal: To design a set of well distinguishable haptic icons

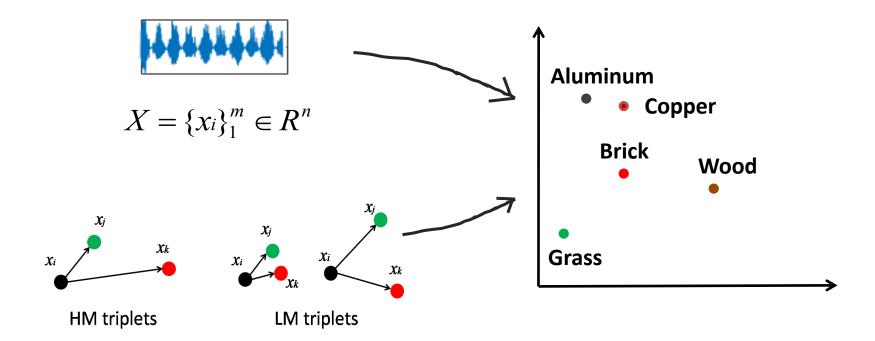
Input data: 25 haptic stimuli

Method: MDS is used to select 9 most separable stimuli

## Limitations:

- Requires users dissimilarity rating for all possible signal pairs
- Requires numerical estimates of pair-wise distance
- Non-parametric approach
- Fails to incorporate uncertainty in comparisons





- Generalizes to unseen signals
- Works even with partial training data
- Requires non-numerical relative comparisons of signals
- Accommodates both types of triplets

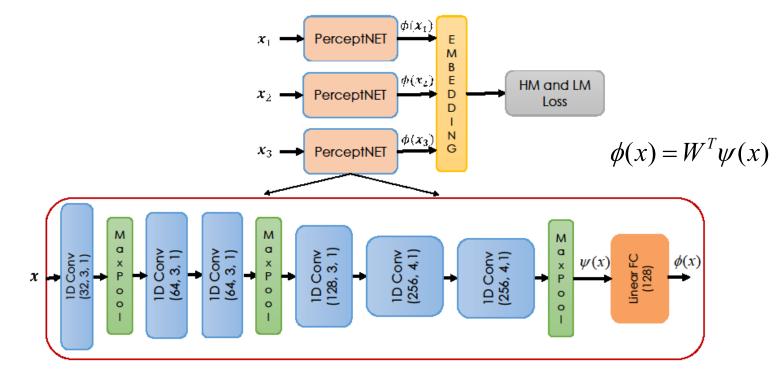
#### Advantages

To learn an embedding function  $\phi : \mathbb{R}^n \to \mathbb{R}^m$  such that the Euclidean distance  $d_{\phi}(x, y) = \|\phi(x) - \phi(y)\|$  satisfies:

$$d_{\phi}(x_i, x_k) - d_{\phi}(x_i, x_j) \ge \xi_{\phi} \text{ if } (x_i, x_j, x_k) \in H$$
$$|d_{\phi}(x_i, x_k) - d_{\phi}(x_i, x_j)| < \xi_{\phi} \text{ if } (x_i, x_j, x_k) \in L$$

We use a deep neural network(DNN) to learn  $\phi$ 

 $\xi_{\phi}$  : Hyper-parameter



$$d_{\phi}(x, y) = \| \phi(x) - \phi(y) \| = \| W^{T}(\psi(x) - \psi(y)) \|$$
$$\sqrt{(\psi(x) - \psi(y))^{T} W W^{T}(\psi(x) - \psi(y))}$$
$$\sqrt{(\psi(x) - \psi(y))^{T} M(\psi(x) - \psi(y))}$$

Based on the type of triplet, distance margin is penalized by following loss function

$$\min_{\phi} \sum_{c \in H} \exp(-\rho(c)) + \sum_{c \in L} 1 - \exp(-|\rho(c)|)$$
$$\rho((x_i, x_j, x_k)) = d_{\phi}^2(x_i, x_k) - d_{\phi}^2(x_i, x_k)$$

Network is trained iteratively using standard backpropagation technique

## Experiments

**Input** – CQFB features of acceleration signals recorded from 108 classes (metal, grass, etc) with 10 samples each and GT perceptual distance  $d^*(x, y)$  of each pair of classes

#### **Ground-truth**

 $d^*(x, y)$  - Fraction of subjects (out of 30) could distinguish between corresponding classes  $\xi^*$  - 10% of the maximum margin over all possible triplets of signal

**Triplets generation**  $H = \{(x_i, x_j, x_k) \mid d^*(x_i, x_k) - d^*(x_i, x_j) \ge \xi^*\}$   $L = \{(x_i, x_j, x_k) \mid d^*(x_i, x_k) - d^*(x_i, x_j) \mid < \xi^*\}$ 

Stresse et al. TOH 2017

## **Experiments**

#### **Evaluation**

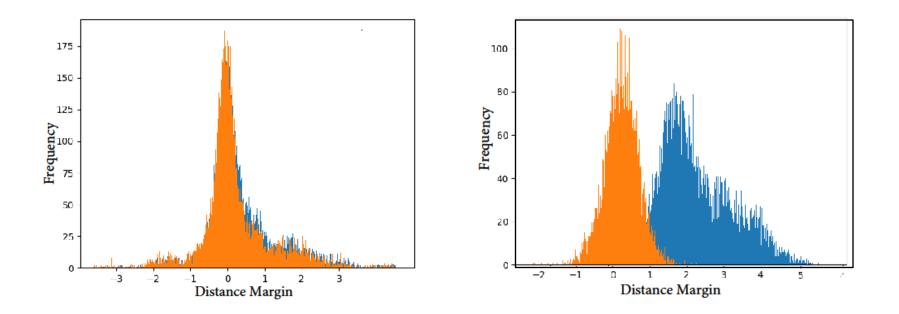
Triplet generalization accuracy (TGA) - Fraction of satisfied triplet constraints in a test set

$$d_{\phi}(x_i, x_k) - d_{\phi}(x_i, x_j) \ge \xi_{\phi} \text{ if } (x_i, x_j, x_k) \in H_{test}$$
$$|d_{\phi}(x_i, x_k) - d_{\phi}(x_i, x_j)| < \xi_{\phi} \text{ if } (x_i, x_j, x_k) \in L_{test}$$

 $\xi_{\rm \phi}$  is estimated by minimizing  $|f_{\rm H}-f_{\rm L}|$  where

 $f_{\rm H}$  - fraction of high-margin correctly classified training triplets  $f_{\rm L}$  - fraction of low-margin correctly classified training triplets

#### Histogram of test triplet margins

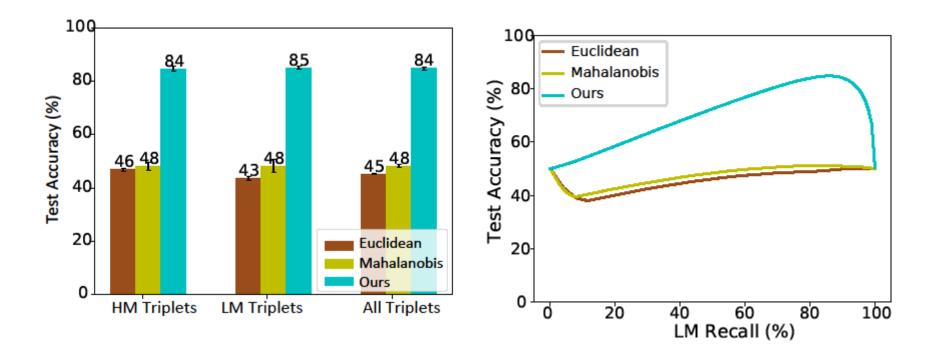


Distribution of learned high-margin (blue) and low-margin (orange) triplet in Mahalanobis space (left) and in PerceptNet space (right)

Three variants of experimental protocol-

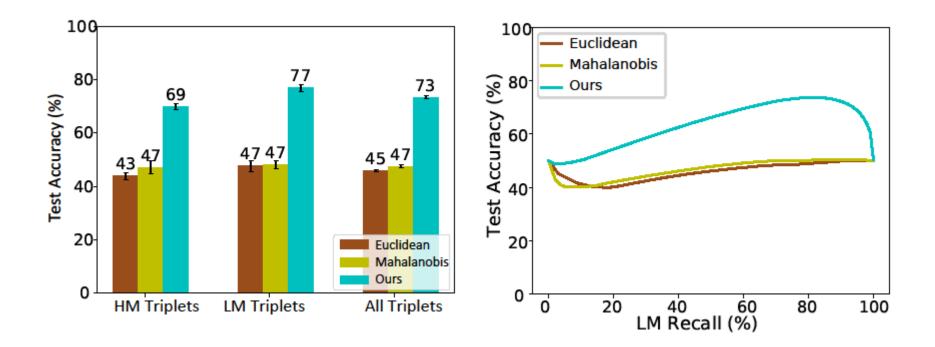
- Held-Out Triplets 50% of triplets are held-out for testing , however the samples and classes are common for training and testing
- Held-Out Samples- 20% samples from each class are held-out for testing
- Held-Out Classes- All samples from 20% class are held-out for testing

## (1) Experimental Results (Held-Out Triplets)



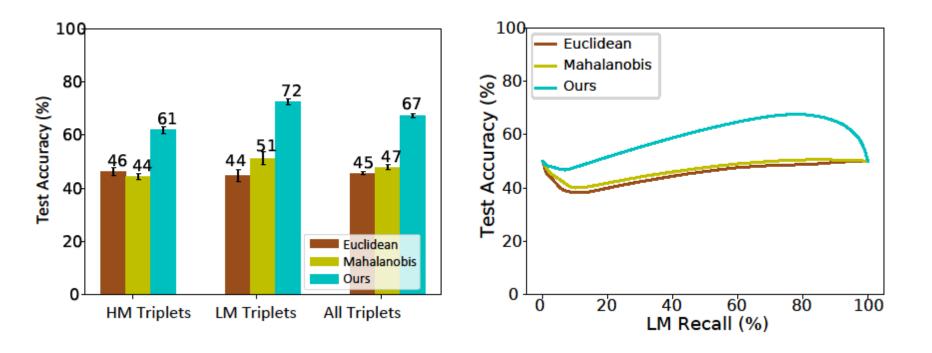
Triplet Generalization Accuracy (TGA) of different metric at optimal threshold (left) and full range of thresholds(right)  $\xi_{\phi}$ 

## (2) Experimental Results (Held-Out Samples)



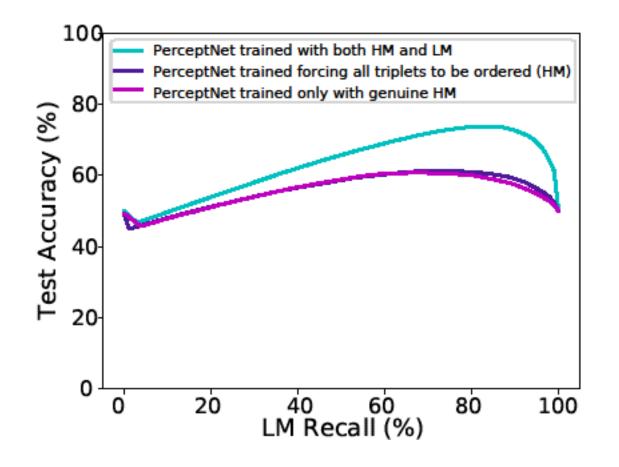
The accuracies of PerceptNet reduces in this harder case (73%), but PerceptNet is still distinctly better

## (3) Experimental Results (Held-Out Classes)



The accuracies of PerceptNet further drops to (67%), but PerceptNet is still generalizes much better.

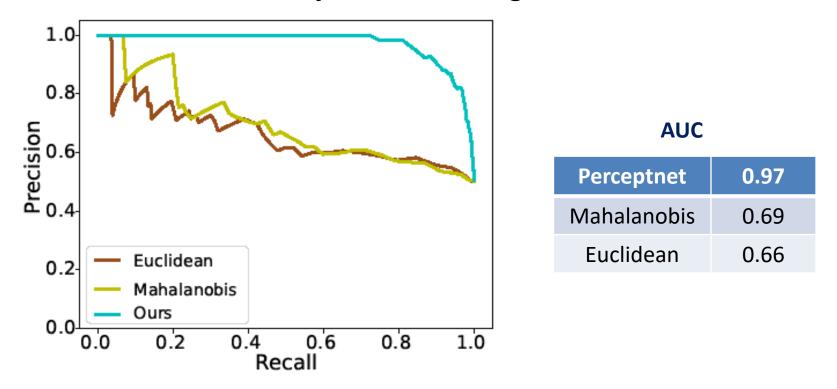
#### **Experimental Results:** Importance of low margin triplets



**Triplets generation**  $H = \{(x_i, x_j, x_k) \mid d^*(x_i, x_k) - d^*(x_i, x_j) \ge \xi^*\}$   $L = \{(x_i, x_j, x_k) \mid d^*(x_i, x_k) - d^*(x_i, x_j) \mid < \xi^*\}$ 

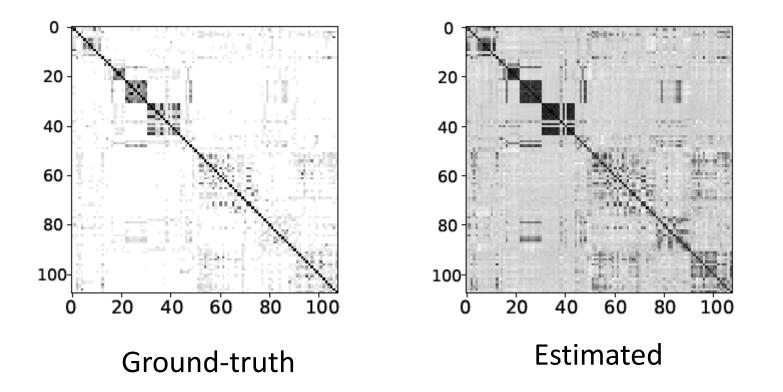
#### Pairwise distinguishability of PerceptNet

Ground-truth generation - A pair is considered distinguishable if >50% subjects can distinguish



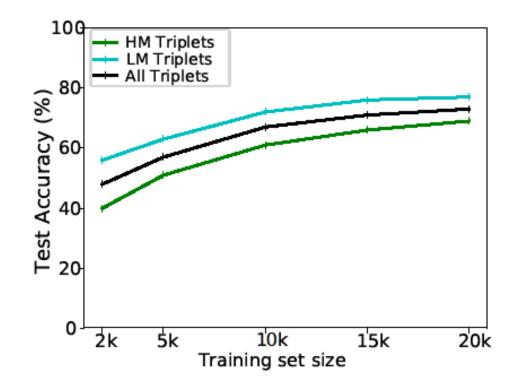
Precision-recall plot for classifying distinguishable and indistinguishable pairs of signals

**Confusion matrix -** White indicates low and black high similarity



PerceptNet is trained only with relative similarity, hence relative ordering is preserved not the numerical ground-truth confusion values

#### **Dependence of training set size**



Accuracy increases proportionally with the size of the training set, but with decreasing benefits for larger sizes

# Perceptual Embedding of Olfactory Signals

## **Experiments**

**Input**: Chemical features (X) and perceptual descriptor of 268 compounds (Octanol, Benzaldehyde, and Hexenel.)

**Chemical features** : hydrogen bond, molecular weight and heavy atom count etc

**Perceptual descriptors:** Human subjects rating against odor descriptors such as pungent, fruit, mint and smoke

$$d^{*}(x, y)$$
 - obtained using cosine similarity

**Triplets generation:** 

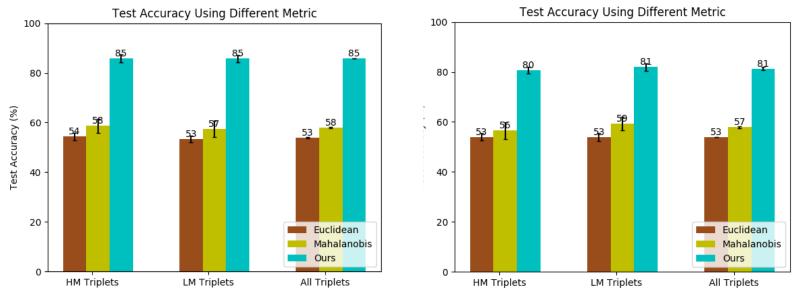
$$H = \{ (x_i, x_j, x_k) \mid d^*(x_i, x_k) - d^*(x_i, x_j) \ge \xi^* \}$$
  
$$L = \{ (x_i, x_j, x_k) \mid d^*(x_i, x_k) - d^*(x_i, x_j) \mid < \xi^* \}$$

Kush et al. DSP  $2016^{24}$ 

## **Network Architecture**



## **Experimental Results (Olfactory Data)**



#### **Held-Out Triplets**

**Held-Out Classes** 

Unlike haptic dataset, in this case, model generalizes quite well even for compounds never seen before

## **Perceptual Embedding of Image Data**

## Experiments

**Input:** 100 images and ground truth perceptual similarity matrix generated from crowd sourced perceptual grouping judgments

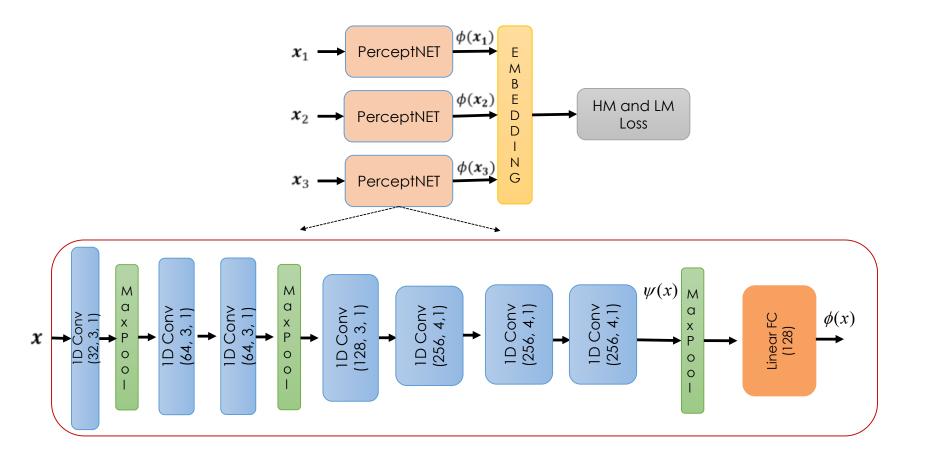
#### **Ground-truth:**

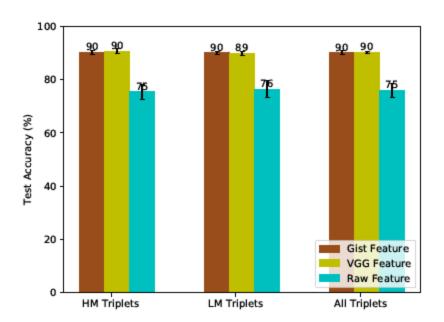
 $d^*(x, y)$ -Fraction of subjects (out of 100) could distinguish between corresponding classes  $\xi^*$ - 10% of the maximum margin over all possible triplets of signal

**Triplets generation:** 

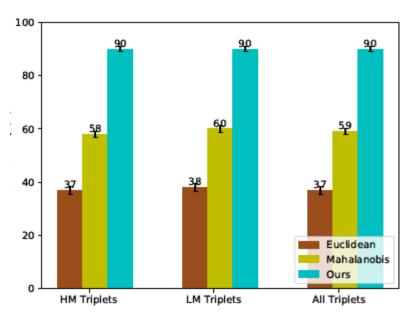
$$H = \{ (x_i, x_j, x_k) \mid d^*(x_i, x_k) - d^*(x_i, x_j) \ge \xi^* \}$$
$$L = \{ (x_i, x_j, x_k) \mid d^*(x_i, x_k) - d^*(x_i, x_j) \mid < \xi^* \}$$

## **Network Architecture**



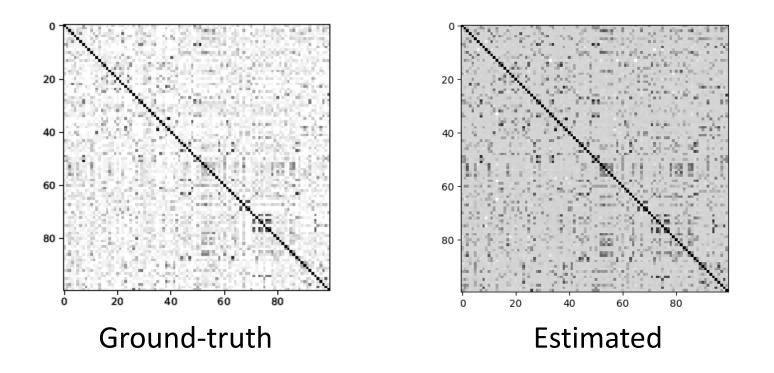


Performance of our model using different features



Performance comparison of different metric using gist feature

#### **Pairwise distinguishability**



**Confusion matrix-** White indicates low and black high similarity

## **Future Work**

- Dealing with limited training data Active learning
- Generating new sample from perceptual space by inverse mapping
- Better acquisition of data- finding trade-off between human effort and accuracy of model.