
RESEARCH ARTICLE

Perceptual metrics for odorants: Learning

from non-expert similarity feedback using

machine learning

Priyadarshini KumariID
1*, Tarek Besold2, Michael Spranger3

1 Sony AI, Sunnyvale, California, United States of America, 2 Sony AI, Barcelona, Spain, 3 Sony AI, Tokyo,

Japan

* priyadarshini.kumari@sony.com

Abstract

Defining perceptual similarity metrics for odorant comparisons is crucial to understanding

the mechanism of olfactory perception. Current methods in olfaction rely on molecular

physicochemical features or discrete verbal descriptors (floral, burnt, etc.) to approximate

perceptual (dis)similarity between odorants. However, structural or verbal descriptors

alone are limited in modeling complex nuances of odor perception. While structural fea-

tures inadequately characterize odor perception, language-based discrete descriptors

lack the granularity needed to model a continuous perception space. We introduce data-

driven approaches to perceptual metrics learning (PMeL) based on two key insights: a) by

combining physicochemical features with the user’s perceptual feedback, we can leverage

both structural and perceptual attributes of odors to define dissimilarity, and b) instead of

discrete labels, user’s perceptual feedback can be gathered as relative similarity compari-

sons, such as “Does molecule-A smell more like molecule-B, or molecule-C?” These triplet

comparisons are easier even for non-experts users and offer a more effective representa-

tion of the continuous perception space. Experimental results on several defined tasks

show the effectiveness of our approach in evaluating perceptual dissimilarity between

odorants. Finally, we investigate how closely our model, trained on non-expert feedback,

aligns with the expert’s similarity judgments. Our effort aims to reduce reliance on expert

annotations.

Introduction

All five basic senses—sight, touch, smell, hearing, and taste- contribute to enriching our daily

lives. For example, the deliciousness of food that we enjoy every day is a result of all five senses.

In fact, contrary to common beliefs, several studies assert that taste perception is stimulated

more by olfactory receptors than by gustatory receptors [1, 2]. The recent surge in artificial

intelligence (AI) makes an effort toward emulating human perceptual intelligence in

machines. While our knowledge about machine vision and hearing has grown rapidly over the

past few decades, the mechanism of chemical senses (taste and smell) remains poorly

understood.
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A century ago, Graham Bell observed that an effective metric to measure likeness and differ-

ences between sensory stimuli is essential for the advancement of any sensory science [3].

Even in artificial intelligence, one of the fundamental questions we address is “what makes sen-

sory inputs (images or speech) seem alike or different”. While numerous studies are conducted

to identify standard metrics to measure the human-perceived (dis)similarity between images

[4–6], speech [7, 8], and tactile signals [9], olfaction and taste (also called chemical senses) lack

such metrics to quantify, characterize, or distinguish sensory stimuli [10]. Our study makes an

effort in this direction to quantify and characterize perceptual dissimilarity between odorants

by employing machine learning techniques.

One of the critical steps toward developing perceptual metrics is to learn the perceptual fea-

tures of input stimuli. In the audiovisual domain, wavelength and frequency enable the charac-

terization of perceptual features such as color and pitch. In contrast, learning olfactory

perceptual features is much more challenging. Several prior studies [11, 12] made an effort to

derive a standard set of olfactory features that contributes to perception. However, their find-

ings could not reach any reliable consensus due to an enormously large set of potential olfac-

tory primaries that could be derived from hundreds of olfactory receptors.

Another approach to estimating the dissimilarity between odorants involves employing

quantitative structure-odor relationship models (QSOR) [13]. The core idea of QSOR models

is to identify what structural features evoke a specific odor perception, say, “musky” or “fruity”.
Once an accurate mapping between structural features and odor percepts is learned, one can

efficiently estimate the perceptual dissimilarity between odorants. QSOR models can poten-

tially be used for other applications as well, such as synthesizing novel flavors/odors and drug

discovery. However, despite the decade-long effort, a reliable structure-odor relationship has

yet to be established. Numerous earlier attempts in this direction could see only limited success

due to a) lack of chemoinformatic and computational tools to extract meaningful features of

molecules and b) a complex relationship between odorant structure and percepts which is

hard to model accurately. Furthermore, QSOR modeling necessitates discrete verbal descrip-

tors for various odor impressions, which are challenging to gather and require domain-expert

knowledge.

The emergence of modern chemoinformatic and computational tools such as Dragon

[14] and ChemoPy [15] enabled easy access to thousands of physicochemical features. With

remarkably powerful modeling tools such as deep learning, QSOR modeling has made nota-

ble progress. For instance, Benjamin et al. [16] built a QSOR model to learn perceptual fea-

tures using Dragon [14] features and graph neural networks. Similarly, Kowalewski et al.
[17] train the random forest [18] on the Dragon [14] features for odorant classification task.

Although QSOR models can be used to estimate perceptual dissimilarity between odorants,

they suffer from a few major disadvantages. First, they rely on discrete perceptual descriptors

(“woody” or “musky”), which lack granularity to adequately capture the continuity of percep-

tual space. Moreover, such verbal profiling of odorants requires expert annotation, which is

often expensive. They are also likely to be culturally and regionally biased due to the depen-

dency on language-based verbal attributes. Arctander’s study [19] indicates that olfaction

labels are usually obtained from certain domain specialists, such as perfumers or wine tasters,

which does not represent the general perception of the population as a whole. Second, we

emphasize the distinctiveness of our study in comparison to QSOR research [13, 16, 17, 19]

that focuses on learning a discrete embedding space for odor classification. In contrast, our

study is designed to learn a continuous perceptual space that can distinguish between two

odorants even from the same class, based on their degree of differentiation. By adopting this

approach, we are able to offer a more nuanced and comprehensive understanding of odor

perception.
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Our work is closely related to the papers by Kobi et al. and Ravia et al. [20, 21], both of

which propose to use the cosine distance function on the structural features of odorants to esti-

mate perceptual dissimilarity. While Kobi et al. [20] approximate the perceptual dissimilarity

(dP) between mono-molecular odorants, Ravia et al. [21] extend the same study on the mixture

of odorants by combining multiple mono-molecular odorants. They demonstrate the effective-

ness of the angular distance between structural features, which describe the physicochemical

properties of odorants, in representing perceptual dissimilarity between them, as shown in

Fig 1A. While the association between structural and perceptual attributes is plausible, defin-

ing perceptual dissimilarity solely as a function of structural features seems improbable, espe-

cially considering that odor perception may be subjective. Both studies [20, 21] make an

assumption on the correlation between structure and perception—similarity in structural

space leads to the similarity in perceptual space. However, this is not necessarily true, as struc-

tural similarity may not ensure perceptual similarity. In fact, even a minimal difference in a

molecule’s structure can significantly change its odor, the phenomenon is commonly known

as an activity cliff [22] in the olfaction literature.

Our study avoids such assumptions and proposes three different machine learning based

approaches to perceptual metric learning (PMeL). In contrast to Kobi et al. and Ravia et al.
[20, 21] works, our framework combines both structural features and perceptual similarity

judgments to estimate the human-perceived dissimilarity between odorants, as shown in Fig

1B. All three techniques attempt to learn an embedding function ϕ on molecular feature space

using supervision derived from non-expert perceptual similarity feedback. Subsequently, a

simple Euclidean distance approximates the perceptual dissimilarity between the odorants in

the learned embedding space, as shown in Fig 1B. Our work is motivated by the need to avoid

reliance on discrete verbal profiling of odorants, which is much more challenging to obtain,

especially in the olfactory domain. Avoiding discrete verbal profiling of odorants, our method

instead captures the notion of perceptual dissimilarity from triplet relative similarity compari-

sons obtained from non-experts: “does molecule A smell more similar to molecule B, or mole-

cule C?” Such triplet comparisons pose several significant advantages—they are more

consistent across cross-cultural users, do not require domain experts for annotation, reduce

cognitive load for labelers, moderate the odds of calibration errors, and are easier to obtain

even from non-expert users [23, 24]. Our main contributions are as follows.

Fig 1. Comparison of Kobi’s approach et al. [20] with our perceptual metric learning approach (A) Kobi et al.: determine perceptual dissimilarity as a

function of structural features. (B) Our model: combines structural features with perceptual judgments to learn a embedding function ϕ, which reflects

the human-perceived odorant dissimilarity.

https://doi.org/10.1371/journal.pone.0291767.g001
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1. We propose to combine molecular structural features with the user’s perceptual similarity

feedback to learn the olfactory perceptual space.

2. Our method avoids the need for discrete perceptual descriptors and derives supervision

from relative comparisons, which are effective in modeling the continuous perception

space and do not require expert annotation. The concept of learning a perceptual embed-

ding space through relative similarity comparisons has been explored in the fields of com-

puter vision and speech processing. However, our study is the first to investigate its

applicability for modeling the olfactory perceptual space.

3. We present a comparative study of various distance measures, including non-parametric

(multidimensional scaling [25]), linear-parametric (Mahalanobis), and non-linear-

parametric (Deep metric), to quantify human-perceived dissimilarity between odorants.

We then evaluate each metric against other standard baselines for several dissimilarity

assessment tasks and present important insights into their effectiveness in diverse experi-

mental scenarios.

4. At last, we examine how the similarity predictions by our model align with similarity feed-

back provided by domain experts. Insights in that direction offer a new perspective on ways

to reduce reliance on expert-annotated data.

Methods

This section describes three approaches to perceptual metrics learning. First, we propose to

use a classical non-parametric approach, multidimensional scaling (MDS [25]), which has

been extensively used in psychometric studies [26, 27] to estimate the human-perceived

dissimilarity. However, its utility, at present, seems to have been largely unexplored in

olfactory research. Further, to handle out-of-sample extensions, we propose two paramet-

ric approaches to perceptual metric learning. In all three methods, we learn a representa-

tion of input odorants that effectively mimic human perceptual similarity judgments on

odorants.

Multi-dimensional scaling (MDS)

Given a set of N molecules X ¼ fxig
N
1
2 Rd represented by d dimensional features and pair-

wise dissimilarity matrix D, where each entry dij indicates the user-perceived dissimilarity

between odorant i and j, our goal is to learn a representation X̂ ¼ fx̂ig
N
1
2 Rd̂ of the input

odorants in a way that if users perceive that odorant i smells more like j than k, then the Euclid-

ean distance dE should satisfy dEðx̂i ; x̂jÞ < dEðx̂i ; x̂kÞ. The above formulation tries to learn a

spatial representation (X̂) of input odorants in a low-dimensional space so that inter-sample

Euclidean distances conform with the user-specified dissimilarities between odorants. Due to

inherent subjectivity in human perceptual judgments, it is challenging to learn an input repre-

sentation that aligns with the similarity judgments of all users. Therefore, instead of preserving

absolute similarity values, we aim to satisfy only relative similarity orderings, which are easier

to model and less prone to subjectivity.

The method involves iterative steps to minimize the stress function representing the differ-

ence between observed dij and learned dissimilarity dEðx̂i ; x̂jÞ, using gradient descent [28]. The

learned embedding X̂ is rearranged at each iteration to maximize the ordination fit to the

user’s similarity judgments [29]. This, in turn, implies the minimization of stress function S
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expressed as Eq 1.

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðdij � dEðx̂i ; x̂jÞÞ

2

P
d2
ij

s

where dij ¼ perceived dissimilarity

dEðx̂i ; x̂jÞ ¼ estimated dissimilarity

ð1Þ

Here, the constraints are ordinal. More precisely, whenever dij< dik, it implies

dEðx̂i ; x̂jÞ < dEðx̂i ; x̂kÞ. Once the embedding, X̂ , is learned, the Euclidean distance between the

learned perceptual features, dEðx̂i ; x̂jÞ, represents the perceptual distance dP(xi, xj). Although

MDS is effective in modeling perceptual dissimilarity, it is limited in predicting dissimilarity

between new unseen samples. Moreover, it fails to capture non-linear structure in the data.

This motivates our study to explore parametric approaches that enable easy extension to

unseen test samples.

Mahalanobis metric

Given input odorants X ¼ fxig
N
1
2 Rd

and user-specified perceptual similarity judgments, our

objective is to learn a linear distance function W : Rd
! Rd̂ such that dE(WTxi, WTxj)<

dE(WTxi, WTxk) if the odor impression of molecule xi is more similar to xj than xk. In other

words, the perceptual distance, as described in Eq 2, can be viewed as the squared Euclidean

distance on the linearly transformed molecular features WTx.

dWðxi; xjÞ ¼ kWxi � Wxjk
2

2
¼ ðxi � xjÞ

TWTWðxi � xjÞ

dMðxi; xjÞ ¼ ðxi � xjÞ
TMðxi � xjÞ where M ¼WTW

ð2Þ

The resultant distance is parameterized by a positive definite matrix M = WTW. Note that

our framework saves the effort and cost of obtaining numerical estimates of similarity between

molecules as ground truth values. Instead, we consider triplet similarity constraints (i, j, k) 2 C
obtained from users, which indicates the smell perception of the odorant i is more similar to

the odorant j than the odorant k. For given perceptual feedback as relative similarity con-

straints C and molecular structural features X, we develop an optimization framework that

maximizes the distance margin, d2
Mðxi; xkÞ � d2

Mðxi; xjÞ, between dissimilar (xi, xk) and similar

odorant pairs (xi, xj) for as many triplets (i, j, k) as possible. We use the gradient descent tech-

nique for optimization. Unlike the Euclidean distance, which assigns equal weights to all input

dimensions, the Mahalanobis metric takes the correlation between input dimensions into

account in the computation of distances. This enables it to effectively capture complex data

semantics, as demonstrated in our experimental results. However, if the data is highly complex

and non-linear, as in the case of human perception, then the Mahalanobis distance may not be

powerful enough to effectively represent the odor perceptual dissimilarity. Our experimental

results in the next section reflect this intuition. As a result, we employ a deep neural network

for learning an appropriate embedding function that maps input to non-linear feature space,

preserving perceptual dissimilarity between odorants.

Deep metric

Similar to the Mahalanobis metric, the Deep metric learns an explicit parameterized dissimi-

larity function in the input feature space using the supervision derived from the user’s percep-

tual similarity feedback captured as triplet constraints. Unlike non-parameteric methods, deep

metric allows dissimilarity computation for unseen test samples without retraining the model
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from scratch. To effectively model the complexity of perceptual data, we learn a non-linear

embedding function � : Rd
! Rd̂ followed by a linear distance metric M in the transformed

feature space. Our framework as shown in Fig 2 provides an end-to-end training framework

by combining kernel ϕ(x) and metric M learning together. Our neural network architecture

(Fig 2) is inspired by prior works [6, 9], which have been proven effective for perceptual simi-

larity learning for images and haptic signals. Our architecture is similat to siamese network

[30], consisting of three replicas of the network with shared weights, each composed of three

fully-connected layers with ReLU nonlinearities except the last layer, which has linear activa-

tion and zero bias. The choice of our network architecture provides an end-to-end training

framework, which efficiently combines non-linear embedding function learning ϕ using a

compositional network up to the penultimate hidden layer and metric learning M using the

last linear layer at the end. Overall the entire framework can still be viewed as learning the

Mahalanobis distance on the non-linearly transformed features ϕ(x) obtained from the sec-

ond-last layer of the network: dPðxi; xjÞ ¼ d2
Mð�ðxiÞ; �ðxjÞÞ.

As shown in Fig 2, three molecules of a triplet (i, j, k) 2 C are fed to three separate branches

of the network, and the network is trained using the exponential triplet loss function L(xi, xj,
xk) as described in Eq 3. Our loss function is optimized by bringing similar odorants (xi, xj)
closer and dissimilar ones (xi, xk) apart.

L�;Mðxi; xj; xkÞ ¼
X

ðxi ;xj;xkÞ

e� ðd2
Mð�ðxiÞ;�ðxkÞÞ� d

2
Mð�ðxiÞ;�ðxjÞÞ

where d2
Mð�ðxiÞ; �ðxjÞÞ ¼ ð�ðxiÞ � �ðxjÞÞ

TMð�ðxiÞ � �ðxjÞÞ

ð3Þ

Hyperparameters. Our model is trained with Adam optimizer [31] and a learning rate of

0.001 for 1000 epochs. The hyperparameters, including the learning rate (0.001), batch size

(200), and number of epochs (1000), are empirically tuned. We also experimented with triplet

margin loss and found exponential triplet loss performing better in our case. Both Mahalano-

bis and Deep distance function generalize well on new unseen data and do not require manual

Fig 2. An illustration showing how a triplet network works to bring perceptually similar odorants closer together and distinct ones further

apart in the learned embedding space ϕ.

https://doi.org/10.1371/journal.pone.0291767.g002
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feature selection. Next, we introduce the dataset used in our study and the evaluation setup

before discussing the effectiveness of each approach in the results section.

Dataset. We use publicly available dataset by Keller et al. [32] sourced from the DREAM

Olfaction Prediction Challenge [33]. The dataset consists of 480 structurally diverse molecules

at two different concentrations. For each molecule, perceptual similarity ratings are obtained

from 55 subjects of diverse ethnicity, age, and gender. The perceptual ratings are collected on

20 odor descriptors—“edible”, “bakery”, “sweet”, “fruit”, “fish”, “garlic”, “spices”, “cold”,

“sour”, “burnt”, “acid”, “warm”, “musky”, “sweaty”, “ammonia/urinous”, “decayed”, “wood”,

“grass”, “flower”, and “chemical” on an analog scale from 0–100, with 0 and 100 indicating

absence and highest prominence of an odor descriptor, respectively. Unlike the binary dataset

that indicates just the presence or absence of an odor percept, the Keller dataset presents richer

information by providing a degree of presence of a particular odor percept on an analog scale,

which makes it better suited for capturing the granularity of the olfactory perceptual space.

The final ground truth rating is computed by taking an average of all 55 subjects’ ratings across

all 20 descriptors. Hence each molecule i is represented by a 20 dimensional continuous

descriptor vector (~yi 2 R
20

). Fig 3 shows the descriptors distribution for all odorants at two dif-

ferent concentrations. As we can see, the dataset is skewed, with “chemical”, “sweet”, “musky”,

“edible”, and “sour” more often used than others at both high and low concentrations.

Relative similarity comparisons. Note that our learning framework does not require dis-

crete odor descriptors to learn the perceptual metrics for odorants. In fact, the motivation of

our proposed method is to avoid discrete verbal descriptors for several shortcomings such as

high subjectivity and ambiguity. The Keller et al. dataset does not provide triplet relative simi-

larity between odorants. It instead captures pairwise dissimilarity between odorants from

users. Therefore, first, we generate a set of triplets comparison C using a given dataset. We

compute the pairwise similarity between all pairs of odorants (i, j), using the cosine function:

dij ¼
~yi �~yj
k~yi kk~yj k

. Here ~yi 2 R
20

is the perceptual descriptor vector of the odorant i. Using the pair-

wise dissimilarities for all odorant pairs, we construct an exhaustive set of triplet constraints

C = (i, j, k)|dij< dik, indicating user-perceived dissimilarity of molecule-pair (i, j) is less than

the molecule-pair (i, k).

Evaluation setup. We consider several state-of-the-art structural features X as our base-

line—Keller et al. feature (used in the paper [32]), Mordred [12], and Dragon [14] features.

Fig 3. Distribution of perceptual descriptors of odorants at high (blue) and low (green) concentrations. Few descriptors, such as “sweet”,

“chemical”, and “musky” are more often used to describe odor perception than other descriptors.

https://doi.org/10.1371/journal.pone.0291767.g003
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The dimension of the Keller features is 379. To make the comparison fair, we reduce the

dimension of the Mordred and Dragon features to 379 using principal component analysis

(PCA) and singular value decomposition (SVD). Our models are trained on 379 dimensional

structural features X with perceptual supervision derived from user similarity feedback

encoded as pairwise dissimilarity matrix D or triplet comparisons C. We follow standard train-

ing practice; we create ten splits of the dataset, consisting of training, validation, and test sets,

and evaluate each model on the test set. We measure the model performance on ordinal simi-

larity ranking by the triplet generalization accuracy (TGA), which indicates the percentage of

test triplets (ground-truth) whose triplet similarity orders, given by users, match with the simi-

larity orderings predicted by our learned model. For pairwise dissimilarity, we assess the per-

formance of all three metrics, MDS, Mahalanobis, and Deep metrics, using the learned

measures d2
Eðx̂i ; x̂jÞ, d

2
Mðxi; xjÞ, and d2

Mð�ðxiÞ; �ðxjÞÞ, respectively. Further, we demonstrate the

qualitative performance in mimicking perceptual dissimilarity between odorants using confu-

sion matrices.

Results and discussion

This section presents a set of experiments that we have carried out to evaluate the performance

of the three metrics on various similarity assessment tasks defined on odorants at two different

concentrations. Due to space constraints, we report some experimental results in the Support-

ing Information. We first evaluate the effectiveness of the Multidimensional Scaling (MDS)

approach in representing the human-perceived dissimilarity between odorants. Subsequently,

we assess the Mahalanobis and Deep metrics in representing human perception by answering

the following questions: Q1: How effective are our learned metrics in emulating ordinal (rela-

tive) similarity provided by users Q2: Can the learned metrics also preserve pairwise percep-

tual distances? Q3: How effective is our framework in the retrieval task? Subsequently, we

perform qualitative analysis to highlight some key observations of our study. For instance, Q4:

How does the concentration of odorants affect smell perception? Q5: How well does similarity

predicted by the perceptual models trained on non-expert similarity feedback align with expert

similarity assessments? In addition, we investigate the performance of different physicochemi-

cal features in emulating human perception.

Performance on ordinal similarity ranking (Q1)

We start by investigating the effectiveness of MDS on the ordinal similarity ranking task. We

observe that MDS is quite effective in representing perceptual similarity between odorants,

with a TGA accuracy of 89.8 ± 0.007% at high and 85.2 ± 0.007% at low concentrations. On

the other hand, other non-parametric measures such as spectral embedding and t-SNE [34]

performed sub-optimally, with an accuracy of only 48 ± 0.008% and 57 ± 0.005% for low con-

centration odorants, and 51 ± 0.006% and 58 ± 0.002% for high concentration odorants,

respectively. Next, we compare the performance of Mahalanobis and Deep metrics against

other baseline metrics and prior approaches in the literature, including the largest margin

nearest neighbor (LMNN), Euclidean distance, and cosine distance used by Kobi et al. and

Ravia et al. [20, 21]. We train the LMNN [4], Mahalanobis and Deep metrics on ten splits of

training triplets, resulting in 10 perceptual models, and report the mean accuracy and variance

of each metric over ten runs. As shown in Fig 4, our learned metrics, both Mahalanobis and

Deep metrics, perform consistently well across all structural feature types, with Dragon fea-

tures reduced by PCA performing slightly better than other choices of features and data reduc-

tion techniques. We validated the robustness of our method by performing the same

experiment on another dataset, Goodscent. In line with the Keller et al. [32] dataset, we
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initially transformed the descriptor ratings into triplet similarity ordering using Jaccard simi-

larity and proceeded to utilize the same methodology for model training. To provide further

clarification, it should be noted that unlike the Keller dataset, we do not have descriptor anno-

tation from non-expert users for two concentrations. Moreover, the Goodscent annotation is

coarse, representing only the presence or absence of a particular smell impression. As a result,

the representation for the molecules is binary, in contrast to the more fine-grained, continuous

descriptor vectors used in the Keller dataset. As shown in Fig 5, we observed a similar perfor-

mance trend, albeit with slightly degraded accuracy for all metrics. This is expected since the

ground-truth annotation is coarse, and that leads to sub-optimal modeling of the continuous

perceptual space.

Several studies [35], including Keller et al. [32], consider the odor descriptor “pleasant/

unpleasant” as the most prominent dimension in odor perception. Therefore, we were curious

to check how the hedonic descriptor “pleasant” contributes to modeling perceptual similarity.

We generate a new set of triplets with 21 odor descriptors (~y 2 R21
) including the descriptor

“pleasant” and train the Mahalanobis and Deep model from scratch. As shown in Fig 4C and

4D, we observe a gain, up to 6%, in the model performance with the inclusion of the “pleasant”

descriptor. Our study supports the previous finding and reaffirms that the “pleasantness” attri-

bute is crucial and improves the perceptual distinguishability of odorants.

Discussion. As shown in Figs 4 and 5, the deep metric significantly outperforms all other

metrics, followed by Mahalanobis and LMNN for all features at both high and low concentra-

tions. This result demonstrates the neural network model’s ability to model non-linear and

complex relationships in the data. Our study also revealed some interesting observations that

align with our intuition. Specifically, we found that the Mahalanobis metric performs better

than the Euclidean and cosine functions because it takes into account the correlation between

different feature dimensions, whereas Euclidean and cosine treat all components as indepen-

dent and identical distributed. Additionally, we observed that the deep metric outperforms

Fig 4. Performance comparison on relative similarity comparison task. For all features, the model performance is measured by the mean triplet

generalization accuracy over ten splits of data. A: High concentration w/o “pleasant” descriptor B: Low concentration w/o “pleasant” descriptor C: High

concentration with “pleasant” descriptor D: Low concentration with “pleasant” descriptor. Our study indicates the importance of the “pleasant”

descriptor—its inclusion in the ground-truth similarity computation improves the performance of metrics at both concentrations.

https://doi.org/10.1371/journal.pone.0291767.g004
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Mahalanobis and LMNN due to its ability to capture non-linear and complex semantics in the

data.

We also observe the performance of the learned metrics for high-concentration odorants is

slightly better than that for the lower concentration. We believe that the user’s perceptual rat-

ing is less ambiguous at a high concentration, leading to superior metrics performance. Note

that MDS performs on par with the Deep metric. In general, MDS is effective in capturing

implicit hidden concepts that humans use while making similarity judgments. For instance,

users may group even chemically distinct odorants based on their familiarity. Such vague per-

ceptual concepts are hard to capture by structural features. MDS gains advantage in modeling

such concepts as the method is not restrained by structural features. MDS enables learning

perceptual features in an abstract space that abides maximally with perceptual constraints. In

contrast, parametric approaches are tied by learning an embedding function in the input

molecular feature space. We observe a slightly superior performance of MDS even in the pair-

wise distinguishability task described in the next subsection. In summary, we achieve compa-

rable performance of MDS and Deep metric, but unlike MDS, Deep metric has generalization

ability on new samples. Due to superior performance and better generalization ability, all the

results shown subsequently are on the Dragon features reduced by PCA and triplets derived

from 21 perceptual descriptors (including “pleasant”), unless otherwise stated.

Performance on pairwise similarity (Q2)

Now, we evaluate how effective different dissimilarity measures are in preserving pairwise dis-

tances in the learned embedding space. An accurate representation of perceptual pairwise dis-

tance can enable several applications, which require identifying distinguishable from

indistinguishable odorant pairs, such as novel perfume or flavor synthesis. As mentioned ear-

lier, the ground truth similarity is computed using cosine similarity on average descriptor rat-

ings on 480 odorants by Keller et al. [32]. Fig 6 shows the ground-truth (GT) pairwise

Fig 5. Triplet generalization accuracy of different metrics on Goodscent dataset.

https://doi.org/10.1371/journal.pone.0291767.g005
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distances for all 480 odorants (left) at high concentration (a similar result for low concentra-

tion is shown in the Supporting Information). For better visualization, we randomly select a

region in the ground truth confusion matrix and enhance it to compare the performance of

different metrics. Each entry in the confusion matrix denotes the normalized average pairwise

distance between corresponding odorants across multiple runs. As we see in Fig 6, the pairwise

distances between features learned by MDS or Deep metric matches the ground-truth values

quite well.

Discussion. While Deep metric and MDS quite effectively replicate the general trend in

similarity values of ground truth, they do not precisely reproduce the exact numerical esti-

mates of similarity. This aligns with our intuition as our framework optimizes for preserving

relative similarity ordering of odorants. The model is trained on ordinal similarity orderings;

hence, we expect better match in ordinal similarities instead of quantified similarities. Not-

ing the superior performance of the Deep metric over the Mahalanobis metric in capturing

pairwise and ordinal similarity learning of odorants, we further investigate the performance

of the Deep metric on other defined tasks such as perceptual embedding and odorant

retrieval.

Perceptual embedding and retrieval task (Q3)

To evaluate the effectiveness of the learned perceptual embedding space as a whole, we visual-

ize the representation of odorants learned by our Deep metric using the t-SNE algorithm [34].

The learned Deep metric outputs a 25 dimensional representation of odorants, which are

embedded in 2D space via t-SNE mapping. Fig 7 shows all 480 high concentration odorants in

the learned embedded space, where proximity between odorants indicates the degree of simi-

larity in the smell perception. Few randomly selected odorants (shown in orange) and their six

most-rated perceptual descriptors by non-expert users are explicitly highlighted for qualitative

Fig 6. Performance of different perceptual metrics on pairwise distinguishability task. The left-most confusion matrix shows the ground truth

similarity generated using the users’ study data conducted by Keller et al. [32]. The matrix is normalized between 0 and 1, with 0 and 1 indicating the

most similar and dissimilar pairs, respectively. To improve visualization, we enhance a particular region to show the pairwise distinguishability of

different metrics.

https://doi.org/10.1371/journal.pone.0291767.g006
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analysis. As we see in Fig 7, the overlap in the perceptual descriptors of nearby odorants is

indeed greater than the distant odorants. A similar trend is also reflected in the learned percep-

tual space—dp(A, B)< dp(A, D), dp(A, D)� dp(A, E), dp(D, E) < dp(D, C), etc. The descriptors

“pleasant” and “chemical” are common for all selected odorants, as they have been the most

frequently used by users to describe odorants.

We further investigate how a model performs on the odorant retrieval task, which is more

effective in evaluating the robustness of the learned model in identifying perceptually similar

neighbors. We randomly select a query odorant and retrieve its nearby molecules in the

learned embedding space. Fig 8 shows the top four closest neighbors of the query odorant in

the learned embedding space. For each molecule, we show five perceptual descriptors rated by

non-expert users. The top row lists the retrieved odorants in the embedding space when the

“pleasant” descriptor is used in the training data. To check if the learned space is biased

towards the hedonic descriptor “pleasant”, which is dominantly used by users, we trained a

model by excluding it from the training data. As Fig 8 shows, both embeddings learned with

or without the dominant descriptor are quite effective in retrieving perceptually similar

Fig 7. 2D projection of molecules in the learned space using t-SNE. Few odorants are highlighted to show how the placement of molecules in the

embedding space reflects the perceptual ratings gathered from users.

https://doi.org/10.1371/journal.pone.0291767.g007
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odorants: this feature enables several applications, which require discovering a substitute for a

given odorant.

Discussion. We observe that our learned embedding space shows a meaningful pattern. If

we ignore dominantly used descriptors such as “pleasant” and “chemical”, molecules on the

left side of the embedding space are malodorous, having “musky”, “sweaty”, and “acid” smell

impression, whereas molecules on the right side are more pleasant-smelling, having odor

impression of “sweet”, “flower”, “fruit”, etc. We also observe in Figs 7 and 8 perceptually simi-

lar odorants do not share the same functional groups. Our study further affirms that the per-

ception of molecules involves much more complex mechanisms, and structural and/or

physicochemical properties alone may be insufficient to fully characterize the olfactory percep-

tion. We also note that the correlation between some specific functional groups and their effect

on odor impression is more frequently established than others. For instance, the presence of

sulfurous or nitro group in a molecule often correlates to a pungent or unpleasant smell. How-

ever, other parameters, such as the number or relative position of functional groups or branch-

ing points, are equally crucial for how molecules are perceived as specific odors. Moreover,

perceptual factors such as users’ familiarity with smell and subjective experience cannot be

weighed less in modeling not just olfactory but any sensory perception. More results on

retrieval with different functional groups are shown in the Supporting Information.

Effect of concentration on smell perception (Q4)

We now investigate how concentrations of molecules affect its smell perception. The Keller

et al. [32] dataset contains odor descriptors from non-expert users for 480 molecules at two

different concentrations. Based on the perceptibility of each odorant, non-expert users provide

21 dimensional perceptual ratings (including “pleasant” descriptor) at two different concentra-

tions. We train two neural network models on triplet similarity constraints generated from

perceptual ratings recorded for low- and high-concentration odorants. Using the t-SNE

Fig 8. The top four perceptually similar odorants (in decreasing order from left to right) to query odorant retrieved by Deep metric. For the

selected query, we show the results of two models trained w/ and w/o the “pleasant” descriptor. In both cases, our model could effectively retrieve

perceptually similar odorants.

https://doi.org/10.1371/journal.pone.0291767.g008
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mapping, we project the 25 dimensional learned features into the 2D space. High- and low-

concentration molecules are shown in dark and dim orange, respectively. It is interesting to

note that the same molecule at two different concentrations sometimes is more dissimilar than

the different molecules. For instance, in both ground-truth perceptual data and in the learned

space, the smell perception of low-concentrated acetaldehyde is more similar to benzaldehyde

(shown by green text) than high-concentrated acetaldehyde, shown in blue text in Fig 9. Intui-

tively, concentration affects smell perception: even an odorant with a strong smell can become

odorless at high dilution. Moreover, some chemical properties, such as density and acidity,

may change with concentration. Our results align with intuition and validate that smell per-

ception is much more complex and a function of several physical, chemical, and perceptual

factors than just its structure.

Comparison of the learned model with expert feedback (Q5)

At last, we compare how closely similarity predicted by our learned model trained on non-

expert users’ data conforms to expert similarity feedback. Unfortunately, olfaction lacks data

that has direct similarity assessments on odorants from experts. We leverage the Goodscents

data [36], which consists of thousands of odorants annotated by experts using a dictionary of

discrete odor descriptors, to generate expert similarity assessments. The descriptor dictionary

of the Goodscents is noisy, consisting of several equivalent descriptors, such as “fruit” and

“fruity” and redundant connectors such as “with”, “like”, etc. We manually clean the data, leav-

ing 255 odor descriptors for all molecules. Despite curation, a faithful comparison between

Keller data used by our study [32] and Goodscents data [36] remains challenging for three rea-

sons. First, the descriptor dictionary used in both datasets is very different. The Goodscents

describe the odorants using 255 descriptors in contrast to just 20 descriptors used in the Keller

Fig 9. The learned features of 480 odorants at high (dark orange) and low (dim orange) concentrations are projected onto the 2D space using t-

SNE mapping. Few randomly selected odorants at high concentration (blue text) and low concentration (green text) are highlighted to show the effect

of concentration on the perceptual dissimilarity between molecules.

https://doi.org/10.1371/journal.pone.0291767.g009

PLOS ONE Perceptual metrics for odorants

PLOS ONE | https://doi.org/10.1371/journal.pone.0291767 November 8, 2023 14 / 19

https://doi.org/10.1371/journal.pone.0291767.g009
https://doi.org/10.1371/journal.pone.0291767


dataset. The distribution of both is shown in the Supporting Information. Second, the annota-

tion style of both datasets is different. Binary descriptor vectors describe the molecules in the

Goodscents, whereas Keller data contains more fine-grained representation described by con-
tinuous descriptor vectors. Third, the non-experts annotated Keller data contains noise and a

lot more subjectivity than the Goodscents data.

To address the first challenge, we consider only those descriptors that are common between

the Keller and Goodscent data—16 descriptors are common in both and are mentioned in the

Supporting Information. For uniformity in annotation style, we convert our data into binary

descriptor vectors, discarding the scale ratings provided by users. Subsequently, we use the Jac-

card distance as a common dissimilarity measure for both datasets. To moderate the noise and

subjectivity in the Keller data, we discard infrequently used descriptors, i.e., used by less than

25% of the subjects. With the curated Keller data, we generate the triplets using the Jaccard dis-

tance and learn embedding of odorants using the proposed Deep metric. We validate the

learned model using triplet generalization accuracy (TGA)—we check the percentage of test

triplets (generated from the non-expert Keller data) on which our model’s prediction matches

with the expert similarity assessments (generated from the Goodscents data). We observe that

our model prediction matches fairly well with expert similarity assessments, with a TGA accu-

racy of 71%. Nevertheless, we further analyze the test triplets on which our model’s prediction

differs from the expert data. A few examples of such triplets are shown in Table 1.

Table 1 demonstrates that our model can correctly order the triplets where the distinction

between similar (A, B) and dissimilar (A, C) odorant pairs is large. For instance, 4-Isopropyl-

benzyl alcohol smells quite distinct from benzyl disulfide as compared to ethyl cinnamate, and

both expert and Deep metric predict the same similarity ordering. However, in the second

example, the distinction between the smell impression of the odorant A and C is not signifi-

cant, and our model’s prediction does not align with the expert similarity ordering. We believe

that to achieve such fine-grained accuracy, models need to be trained on more diverse and

larger dataset. We also observe that the mismatch between the expert and our model’s similar-

ity ordering occurs more often when the dominant smell perception of odorants in the triplet

is more specific such as “grass” or “woody” (third and fourth triplets in Table 1). The non-

expert data lack such specificity in perceptual descriptors of odorants, and hence the learned

model on non-expert data fails to accurately represent the perceptual dissimilarity. Overall,

this indicates that our learned model can match with expert similarity assessment fairly well

on easily distinguishable triplets and odorants with generic smell perception, familiar to non-

Table 1. Examples of test triplets on which the similarity ordering predicted by a model (trained on non-expert data) matches or differs from the expert similarity

assessments derived from the Goodscents data.

S. No Triplet of odorants {A, B, C} Goodscents descriptors Expert assessments Predicted ordering

1 A—4-Isopropylbenzyl alcohol

B—Ethyl cinnamate

C—Benzyl disulfide

A—[‘spicy’]

B—[‘spicy’, ‘sweet’, ‘fruit’]

C—[‘burnt’]

s(A, B) > s(A, C) s(A, B) > s(A, C)

2 A—Piperonal

B—(1R)-(-)-Myrtenal

C—4-Ethoxybenzaldehyde

A—[‘spicy’, ‘sweet’]

B—[‘spicy’, ‘sweet’]

C—[‘spicy’, ‘sweet’, ‘floral’]

s(A, B) > s(A, C) s(A, B) < s(A, C)

3 A—4-Hydroxybenzaldehyde

B—Coumarin

C—Diethyl Succinate

A—[‘sweet’, ‘woody’]

B—[‘sweet’]

C—[‘fruit’, ‘floral’]

s(A, B) > s(A, C) s(A, B) < s(A, C)

4 A—2,5-dimethyl pyrazine

B—Ambrox

C—Isopentyl acetate

A—[‘grass’, ‘woody’]

B—[‘sweet’, ‘woody’]

C—[‘sweet’, ‘fruit’]

s(A, B) > s(A, C) s(A, B) < s(A, C)

https://doi.org/10.1371/journal.pone.0291767.t001
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expert users. However, better generalizability requires further investigation in several direc-

tions, which are a scope of future research—a) how to bring objectivity to the non-expert

crowdsourced data, b) how to scale up model training on diverse data, and c) how to design

the user’s study protocol to deduce the non-noisy data from non-experts.

Conclusion

We presented several data-driven approaches to perceptual metric learning for estimating the

human-perceived dissimilarity between molecules. First, we demonstrate the effectiveness of

MDS in estimating perceptual dissimilarity. For generalizability on unseen test samples, we

propose Mahalanobis and Deep metric learning methods that explicitly learn a parametric

function over an input feature space and generalize easily to new unseen samples. Through

extensive experiments, we show the effectiveness of various metrics in representing the percep-

tual similarity between odorants. We showed that perceptual features learned by deep embed-

ding are effective in several learning-based tasks such as odorant retrieval, perceptual

embedding, and relative/pairwise similarity estimation. We further demonstrate how odorants

with distinct structural features and the functional group can still be perceptually similar,

emphasizing the importance of incorporating user-specified perceptual similarity judgment in

the modeling process. Finally, we demonstrate that the Deep metric trained on non-expert

similarity feedback can well approximate the expert’s similarity assessment.

While our study shows promising results towards estimating perceptual dissimilarity

between odorants, we believe that the model’s performance may be vulnerable to subjectivity

in user responses. Additionally, the accuracy of the metrics can be further improved with more

richer and informative structural features. Given the limited publicly available large database,

we conducted an extensive study and evaluated our approach from various perspectives. There

are several potential directions for future work. Moving forward, we would like to extend our

study by developing an effective aggregation method to reliably deduce perceptual judgments

from the crowdsourced data and evaluate the model trained on diverse data. To facilitate the

evaluation of even larger datasets than those considered in this study, it will be interesting to

investigate the utility of active learning for gathering selective user responses to learn effective

perceptual metrics. Another promising direction to explore would be to build local metrics

over data to address the subjectivity problem in user response.

Supporting information

S1 Fig. Performance of different metrics on pairwise distinguishability of molecules at low

concentration.

(TIF)

S2 Fig. Perceptually similar odorants retrieved by Deep metric. The top-four perceptually

similar odorants (in decreasing order from left to right) to Hydroxybenzaldehyde (top) and

L-Cysteine (bottom) ranked by our learned model. For each query odorant, we show results of

two models trained with and without “pleasant” descriptor.

(TIF)

S3 Fig. Goodscents odorant’s distribution. Similar to the Keller dataset, the distribution of

Goodscents descriptors is skewed. Few descriptors such as “sweet” and “green” are frequently

used, and descriptors, such as “bitter” and “musk” are quite scarcely used. Moreover, there is a

huge disparity between Goodscents and Keller descriptor sets. The goodscents data is anno-

tated using 255 discrete descriptors, whereas the Keller dataset use only coarse 20 odor

descriptors to describe 480 molecules. We consider common descriptors used in both datasets
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for our study. The common subset contains 16 descriptors—“sweet”, “woody”, “fruity”, “flo-

ral”, “chemical”, “fish”, “spicy”, “sour”, “sweaty”, “grass”, “acidic”, “ammonia”, “garlic”,

“burnt”, “warm”, “musky”.

(TIF)

S4 Fig. Performance of MDS as a function of dimension of the learned embedding space.

We show the performance of MDS with increasing dimensions of embedding space. The left

figure shows the value of the stress function, which indicates the difference between observed

and estimated dissimilarity values of odorants. As expected, with increasing dimension, triplet

generalization accuracy (right figure) improves as the learned features better represent the per-

ceptual attributes.

(TIF)

S5 Fig. Results shown for additional kernel-based metrics on Keller dataset for low (top)

and high (below) concentrations.

(TIF)
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