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Abstract

Recent research has attempted to predict our perception of odorants using Machine Learn-

ing models. The featurization of the olfactory stimuli usually represents the odorants using

molecular structure parameters, molecular fingerprints, mass spectra, or e-nose signals.

However, the impact of the choice of featurization on predictive performance remains poorly

reported in direct comparative studies. This paper experiments with different sensory fea-

tures for several olfactory perception tasks. We investigate the multilabel classification of

aroma molecules in odor descriptors. We investigate single-label classification not only in

fine-grained odor descriptors (‘orange’, ‘waxy’, etc.), but also in odor descriptor groups. We

created a database of odor vectors for 114 aroma molecules to conduct our experiments

using a QCM (Quartz Crystal Microbalance) type smell sensor module (Aroma Coder®V2

Set). We compare these smell features with different baseline features to evaluate the clus-

ter composition, considering the frequencies of the top odor descriptors carried by the

aroma molecules. Experimental results suggest a statistically significant better performance

of the QCM type smell sensor module compared with other baseline features with F1 evalu-

ation metric.

Introduction

Among our five senses, smell and taste are responsible for chemical perception and recogni-

tion. There are likely several hundred distinct odorants that humans can smell. Any possible

mixture of these odorant molecules creates a new point in the odor space that may be

completely different or almost identical to the original odor of the molecule [1]. Signals from

activated olfactory neuron circuits are aggregated and transferred to the olfactory bulb, pro-

ducing patterns that are processed at higher parts of the brain. Then, this olfactory information

is encoded into perception and linguistic descriptors: ‘fruity’, ‘sweet’, ‘peach’, etc. Significant

advances in vision, audition, and speech [2] suggest that it is possible to similarly predict the

sensory output for olfactory stimuli. Progress in the olfactory domain could help us automati-

cally discover new odorant molecules in a field where perfume and food industries mostly

depend on manual methods.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0289881 August 11, 2023 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Debnath T, Badreddine S, Kumari P,

Spranger M (2023) Comparing molecular

representations, e-nose signals, and other

featurization, for learning to smell aroma

molecules. PLoS ONE 18(8): e0289881. https://doi.

org/10.1371/journal.pone.0289881

Editor: Nguyen Quoc Khanh Le, Taipei Medical

University, TAIWAN

Received: October 24, 2022

Accepted: July 28, 2023

Published: August 11, 2023

Copyright: © 2023 Debnath et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: he author(s) received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-2624-8923
https://doi.org/10.1371/journal.pone.0289881
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0289881&domain=pdf&date_stamp=2023-08-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0289881&domain=pdf&date_stamp=2023-08-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0289881&domain=pdf&date_stamp=2023-08-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0289881&domain=pdf&date_stamp=2023-08-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0289881&domain=pdf&date_stamp=2023-08-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0289881&domain=pdf&date_stamp=2023-08-11
https://doi.org/10.1371/journal.pone.0289881
https://doi.org/10.1371/journal.pone.0289881
http://creativecommons.org/licenses/by/4.0/


However, the available databases for olfactory perception research remain limited, unlike

other deep learning-based research domains such as computer vision. The output space gener-

ally consists of odor descriptors scores obtained from a sensory test. There are two types of

sensory datasets available in the olfactory perception domain. One type represents sensory

data using continuous values [3, 4], either via several intermediate levels or a range from, for

example, 0 to 100 that describes the intensity of a given odor descriptor (‘sweet’). The second

type is binary, that means, an odor descriptor is either detected or not detected for a given

sample [5–7]. The continuous valued data (Dravnieks [3] & Dream dataset [4]) is typically

small with a few hundred samples, whereas binary-valued data (Good scents [6], Leffingwell

[5]) have larger sizes with up to a few thousand samples. Creating a large continuous value

database is difficult because people evaluate odor impression scores on a full scale from 0, so it

is a very time-consuming task. On the other hand, publicly available binary valued databases

are much larger than continuous valued data because only odor descriptors (e.g., ’fruity’, ’flo-

ral’) are recorded for a flavor molecule.

Choosing a set of input features representing aroma molecules and other odorants remains

an open challenge. One option is to generate thousands of physicochemical features for each

molecule through the Dragon (closed source) [8] and Mordred (open source) [9] software.

These consists of atom types, functional groups, topological indices, ring descriptors etc. We

also often see the use of Simplified Molecular-Input Line-Entry System (SMILES) that can be

calculated by Cheminformatic tool (RDKit) [10]. For a given SMILES representation, we can

get the molecular fingerprints [11, 12] (Bit-based fingerprint) or count-based Morgan finger-

prints (CFP).

Many works have approached odor impression prediction from these physicochemical

properties. Sobel et al. [13] used PCA and linear models to explain the relationship between

physicochemical parameters of odorants and odor properties. Keller & Vosshall [4] used 4885

molecular features for 476 molecules to establish a relationship between the odorants and their

perceptual qualities. Following the above study, the DREAM olfaction prediction challenge

demonstrated that it is possible to predict odor from molecular structures using regularized

linear models [14]. Shang et al. [15] studied the method of predicting odor descriptors related

to odor molecules using parameters of molecular structure. Hayashi et al. [16] used Pearson

Correlation Coefficient maps (PCC- maps) and the t-distributed Stochastic Neighbor embed-

ding (t-SNE) method to study the relationship between the odor maps and the molecular

structure parameters of odorants. The Google research brain team used Graph Neural Net-

works with molecular structures to predict 138-odor descriptors tasks [17]. In summary, there

have been many works for predicting odor impressions using molecular structure parameters.

However, most of these works used publicly available datasets and only measured the predic-

tion performance of one type of feature representation at once. Moreover, these methods can-

not be used for chemical mixture even if their accuracy was good, as only simple molecules

can be represented with these physicochemical features.

Another option to represent odors in features is mass spectrum sensory data. Mass spec-

trometry finds the fingerprint of a chemical using sensors based on electron ionization. Nozaki

et al. [18] designed a predictive model based on deep neural network utilizing the mass spectra

of mono-molecular chemicals. To alleviate for language bias when using linguistic odor

descriptors, Nozaki et al. [19] also proposed a predictive model incorporating the language

modeling method Word2vec [20, 21]. They converted the output space from binary descriptor

values to continuous, aggregate values using embeddings for each descriptor. Following the

above work, Tanoy et al. [22] predicted the odor descriptor groups using mass spectra for

chemical mixtures such as essential oils.
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Recently, much research is focused on developing new sensory data using e-noses, with a

common type of sensors using the QCM technology. Their price and usability are usually

advantageous compared with mass spectrum sensors, although sensor drift is said to happen

after a certain period. Hanaki et al. [23] attempted to estimate the impression of blended fra-

grance using the Fuzzy Learning Vector Quantification (FLVQ) method. Recently, Guo et al.

[24] studied mapping from QCM and metal oxide sensor responses to nine odor descriptors

using convolutional LSTM (Long Short-Term Memory) model for 44 odorants.

We found many different approaches in the literature to solve the prediction of odor

impressions for a given odorant and its olfactory stimuli. Determining a featurization that can

be used both for mono-molecular solutions and for chemical mixtures (which food and per-

fumes normally are) remains an ongoing challenge. However, to our knowledge, no study has

evaluated the performance of prediction models in terms of different sensing and feature data

in direct comparisons. Before reaching the long-term goal of building a model and system that

predicts at best the odor perception from chemical mixtures, at first, we need to understand

which input features is best used to represent odorants. In this study, we build a concrete

understanding for modeling single odorant chemical using different representation of features

illustrated in Fig 1. We gather molecular structure parameters, mass spectra, and molecular

fingerprints for a common set of aroma molecules in the literature. We also build our own

dataset of e-nose features using QCM type smell sensor module (Aroma Coder1V2 Set) and

compare the prediction performance of individual odor descriptor & odor descriptor group

with other baseline features.

Materials and methods

Data preparation

We focused on collecting a dataset of 114 molecules (after removing duplicate molecules)

from fragrance kits (purchased [25] from http://profice.shop-pro.jp/)for experimenting with

the Aroma Coder1V2 device, a QCM type sensor module. The manufacturer of the Aroma

Fig 1. Workflow for modeling odor perception from different olfactory stimuli.

https://doi.org/10.1371/journal.pone.0289881.g001
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Bit device was not involved in choosing the odor molecules. We only purchased their device

for measurement purposes. Therefore, there is no bias in the odor sample selection. Next, we

collected odor descriptors (‘citrus’, ‘woody’, etc.) for each sample in the kit using the expert

annotation Good Scents perfume materials database listed in S1 Data. Fig 2 depicts the list of

odor descriptors with the corresponding numbers of samples carrying that descriptor among

the 114 aroma molecules. We also joined the CAS number and SMILES for each molecule

while collecting the dataset.

Baseline features collection

In our baseline experiments, we compared the bit-based path descriptors fingerprints (bFP),

the count-based Morgan fingerprints (cFP), the Mordred features, and the mass spectrum of

each molecule, with the smell vector collected using the QCM-type smell sensor module.

The cheminformatic package RDKit was used to calculate the molecular fingerprint (bFP &

cFP) with the following parameters: radius = 3, which gave us a 1024 bits number for a given

SMILES string per molecule. Mordred features were also generated [9] using the RDKit soft-

ware and we obtained 1324 features (these features are called molecular descriptors such as

number of carbon atoms, molecular weight, predictive values of LogP and other molecular

properties) for each molecule after removing the non-numerical features in the resulting

parameters. Moreover, we collected the mass spectra of the aroma molecules from the chemis-

try Webbook [26] provided by National institute of Standards and Technology (NIST) using

their corresponding CAS numbers where mass spectrum acquired with electron ionization of

70 [eV]. However, we were only able to obtain mass spectra for 80 of the 114 molecules and we

included the exhaustive list of those 80 molecules & corresponding mass spectrum in S1 Data.

As such, the experiments that compare mass spectra with the other features are conducted on

a subset of 80 molecules in the dataset. Although we could not collect the mass spectra for all

114 molecules in this study, we still report the results on this reduced dataset because mass

spectra are an important sensing data. Notably, as linear superposition is valid in mass spec-

trometry [27], it is the only baseline feature with the QCM-type sensor features that be used

for both mono-molecule and chemical mixtures.

Aroma bit smell vector measurement and feature extraction

The Aroma Coder1V2 (ACV2) set is a desktop type odor measurement system developed by

Aroma Bit, Inc., a start-up that develops compact odor sensors. It is equipped with 5 types of

Fig 2. Odor Descriptors list with corresponding number of positive/target samples among 114 aroma molecules.

https://doi.org/10.1371/journal.pone.0289881.g002
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receptor membranes per module. ACV2 embeds 7 sensor modules, or 35 different types of

receptor membranes per scan. These sensors convert the smell samples into electronic

response data. Our measurement method of liquid aroma samples follows the instructions of

the ACV2 set. We place 1 mL of a sample in a glass jar. The jar has a shutter lid that is con-

nected to the air inlet of a detector unit. We let the sample rest for 2 minutes during which the

smell fills the headspace of the jar. Then, we start the sensing procedure which lasts 30 sec. In

the first 10 sec, the shutter opens, and the inlet of the detector unit pumps the air filled with

smell from the jar. The sensor returns smell data as time series representing the frequency

change over time of each receptor membrane. It takes a reading every 0.1sec. Thus, we obtain

35*300 features per sample. We convert these readings into 35-D vectors by taking the total

difference between the base frequency reading (before opening of the shutter) and the peak

frequency reading in these 300 intervals as shown in Fig 3. This is calculated independently for

each of the 35 membranes. For each aroma vector, we sample three measurements using the

afore-mentioned procedure and averaged their 35-dimensional vectors to obtain our set of fea-

tures. We provided 35-dimensional average smell vectors in S1 Data.

Predictive model & evaluation metric

Odor Prediction tasks are often considered as imbalanced problems [28]. With an increase in

the specificity of the odor descriptors, the number of samples in each target class decreases. Fig

2 demonstrates this as most descriptors are present in less than a dozen samples. At first, we

utilized a typical binary classifier (binary SVM) for predicting odor descriptors, but its perfor-

mance on the imbalanced data was unsatisfactory as already reported before [28]. Out of sev-

eral techniques to solve such imbalanced problems, we chose an algorithm level solution by

using one class support vector machine (OCSVM). Schölkopf et al. [29] separates all data

points from the origin and maximizes the distance from this hyperplane to the origin. This cre-

ates a binary function that captures regions of the input space. The objective function of one

class support vector machine is slightly different (C parameter is used for binary SVM and ν
parameter is used for One class SVM) from the typical SVM one.

minw;b;xi
jwj2

2
þ

1

nn

Xn

i¼1

xi � b

Fig 3. Aroma Bit output for the molecule ‘1,8-cineole’: Time vs Frequency change where each signal corresponds to one of the 35

different types of receptor membranes.

https://doi.org/10.1371/journal.pone.0289881.g003
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Subject to:

w:φðxiÞ � b � xi

n 2 ðO; 1�; xi � 0

where w is the weights of the decision boundary, b is the intercept of the boundary and ξi is

nonzero slack variable which allow the procedure to incur in errors. The parameter nu (ν)

characterizes the solution as a) it sets an upper bound on the fraction of outliers (training

examples regarded out-of-class) and, b) it is a lower bound on the number of training exam-

ples used as Support Vectors.

OCSVM can be effective for imbalanced classification where there are very few examples of

the minority class. We report the hyper-parameters search space for binary SVM and OCSVM

in S1 File.

We report the mean F1 and recall score as evaluation metric from each validation fold of

K = 10-fold cross validation repeated 3 times. We did not use the ROC AUC score following

the article by Takaya Saito [30]. The article highlights that highly imbalanced datasets tend to

drag down the false positive rate due to an abundance of true negatives. Precision-Recall

curves are more appropriate for imbalanced datasets. Thus, we chose to use the F1 score which

represents the harmonic mean of precision and recall.

We choose K = 10 since the small values of K have high biases according to Kuhn and John-

son [31]. As K gets larger, the difference in size between the training set and the resampling

subset becomes smaller. Moreover, leave-one-out cross-validation is more computationally

expensive and Molinaro et al. [32] found that leave-one-out and k = 10-fold cross-validation

yielded similar results. They also indicate that repeating k-fold cross-validation can be effec-

tively used to increase the precision of the estimation and still maintain a small bias.

Results and discussion

Data preprocessing

All features were preprocessed before feeding them to the machine learning model. We nor-

malized the Mordred, Aroma Bit & mass spectrum representations to scale them into the

range [0,1]. After that, we used principal component analysis (PCA) to remove the highly cor-

related components in the feature vectors. We keep 95% of total variance for each feature in

this study. We listed the original dimension of each representation and their reduced dimen-

sion after PCA in Table 1. Fig 4 also depicts all those features in two dimensional PCA space

for sweet & non-sweet odor descriptors. 35 principal components (PCs) explained 95% of the

total variance for Mordred features. Bit and count-based molecular fingerprints need respec-

tively 83 and 70 PCs for describing that percentage of variance. As the correlation among dif-

ferent channels of the Aroma Bit features is very high (Fig S2 in S1 File), we found that only 5

PCs are enough for modeling the odor prediction tasks. As explained in the previous section,

Table 1. Original and reduced dimension for each feature used in this study.

Features Original Dimension Reduced Dimension (95% variance)

ECFP6 bFP 1024 83

ECFP6 cFP 1024 70

Mordred 1324 35

Mass Spectrum 212 39

Aroma Bit 35 5

https://doi.org/10.1371/journal.pone.0289881.t001
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the mass spectrum results are obtained on a subset of 80 aroma molecules given that the

remaining samples were not available in our dataset. We found a reduced dimension of 39 PCs.

Fine-grained odor descriptors prediction

Odor descriptor prediction is used for quality checking of products in the perfume, food, or

cosmetic industries. A predictor can save time and cost as compared to manual assessments by

human testers. In a first experiment, we use 114 aroma molecules with all the baseline features

except for mass spectrum data (because not all the mass spectra are available from the NIST

database) in a task to predict the presence or absence of 93 odor descriptors. We model this

multi-label classification task using 93 corresponding binary classifiers. Traditional SVMs

work well for the top odor descriptors where the ratio of negative to positive samples is not

large. For other descriptors, as the number of target samples decreases, the prediction perfor-

mance degrades due to imbalance between positive and negative examples. Thus, we utilize

one-class SVM, as explained in our Materials section. The training procedure of one-class

SVMs is the same as binary SVMs with the exception that the binary version uses both positive

and negative samples during training and the one-class version uses only the majority class.

Statistical tests (paired t-test) across the 93 odor descriptors between each pair of features

show no statistically significant difference between the results obtained with ECFP6 bit &

count features and between ECFP6 count & Mordred features. As the prediction performance

of these physicochemical features were almost the same, we used only Mordred features in the

following experiments. However, the Aroma Bit features significantly outperformed other fea-

tures. Fig 5 (left) shows the statistical test results with their p-value for each combination of the

features where each data point is the F1 score of each of the 93 odor descriptors.

Next, we conducted the same experiment with the 80 aroma molecules for which we found

mass spectrum representations. Only 83 odor descriptors are present in this subset of data.

Fig 4. Principal component Analysis (PCA) for each feature set for sweet vs. non-sweet odor samples. For ECFP6 bit & count,

Mordred and Aroma Bit features, we projected 114 aroma molecules in PCA-2D space. For the mass spectrum representations, we

project the subset of 80 aroma molecules that were available in our dataset.

https://doi.org/10.1371/journal.pone.0289881.g004
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Again, we compared the predictive performance of each odor descriptor predictor based on F1

evaluation metric. The predictors based on Aroma Bit features significantly outperformed the

ones based on Mordred features (as we found for 93 odor descriptors) but there was no statisti-

cally significant difference between the mass spectrum and Aroma Bit features with a p-value

of 0.68 (largely far above the 5% significance level), see also Fig 5 (right). We reported the

mean F1 & recall scores for both experiment in S2 and S3 Data.

These results are encouraging for two reasons. First, the two best-performing sets of features,

the Aroma Bit (QCM based sensor) and mass spectrum features, can also be obtained for chem-

ical mixtures. Future research should explore if their predictive performance can be generalized

on mixtures, a great target for machine olfaction. Secondly, it is easy to use QCM-based sensors.

Compared to these sensors, mass spectrometry sensing devices are much more expensive and

bulkier. We hope that our results will encourage the apparition of new datasets based on e-

noses for conducting more experiments. However, such sensors commonly present sensor drift

after a certain period, which could hinder the creation of large-scale QCM-based data.

The physicochemical properties described previously (bFP, cFP, Mordred features) cannot

be a good choice for chemical mixtures. Let us imagine processing a chemical mixture made of

two mono-molecular subcomponents. If we added up the chemical properties of the subcom-

ponents, the summation could represent a completely different element than the chemical

mixture in terms of boiling point, vapor pressure, etc. Thus, as we conduct our experiments on

mono-molecular odorants, it is worth noting that only the mass spectrum and Aroma Bit sens-

ing data can potentially generalize on mixtures.

Odor descriptor group prediction

Although aroma molecules can be described with several odor descriptors, these descriptors

are often correlated with one another. For example, one can argue that the ‘raspberry’ and

‘blueberry’ labels are correlated. As such, in an alternative task, instead of predicting each spe-

cific odor descriptor, we can predict the similar kind of odor impressions together. This is a

two-step process. First, we cluster odor descriptors in similar groups. The procedure is a

Fig 5. Fine grained odor descriptors prediction using One-class Support Vector Machine. (Left) figure depicts the statistical

comparison of the pre-diction performance (F1 score) for 93 odor descriptors using 4 different features. (Right) figure shows the

comparison among Mordred, Aroma Bit and mass spectrum features for 83 odor descriptors of 80 aroma molecules. Values indicate the

p-value for the pairwise comparison between two features.

https://doi.org/10.1371/journal.pone.0289881.g005
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downstream task where pre-trained word vectors were used for calculating the cosine similar-

ity among 93 odor descriptors. Then, we predict the presence or absence of a group of odor

descriptors for a desired aroma molecule. Our odor descriptor clustering strategy used pre-

trained word vectors on the English Wikipedia corpus using natural language processing

(Fast-Text) to calculate the similarity among odor descriptors as explained in the article [22].

English pre-trained word vector (300 dimensions) was downloaded (6.59 GB) and there are

2519370 tokens available. After that, pair-wise cosine similarities between odor descriptors are

calculated using their word vectors. Finally, hierarchical clustering was carried out based on

the cosine similarity matrix. Fig 6(A) illustrates the procedure for building 6 odor descriptors

cluster. We conducted our experiments with four different numbers of clusters; their respec-

tive descriptors group are reported in (Fig S1 in S1 File).

The odor wheel in Fig 6(A) pictures the hierarchical clustering and qualitatively describes

the association of similar kinds of smell impressions. For example, “candy” is adjacent to

“chocolate” and “vanilla” on the wheel. This signals to perfumers and chemists that when

someone describes a candy flavor, it could be similar to a chocolate or vanilla flavor according

to linguistic clustering.

After preparing the odor descriptor groups, we used them as an output vector for the binary

SVM classifier. If at least one descriptor in an odor group is present in a sample, then the odor

group is considered positive for that sample. Otherwise, it is considered negative. The number

of clusters is a hyperparameter that strongly affects the distribution of samples and the perfor-

mance of the predictive model. Fig S3 in S1 File shows the distribution of the 114 aroma mole-

cules in the different cluster settings. For example, with 4 odor descriptor groups, there are 107

positive samples for cluster index 1. This means that most of the descriptors belong to one

huge cluster while cluster index 2 include very small number of descriptors.

Fig 6. (a) Clustering the 93 odor descriptors in groups using natural language processing (Fast-Text). Results for 6 odor clusters created

using hierarchical clustering on the word-similarity matrix. We used these odor descriptor groups as target vectors for new group-based

predictive models. If a sample has one of the descriptors which is in a cluster i, then this sample is considered as a positive example of

that cluster i.; (b) Prediction performance in ROC space for Mordred features (left side) & Aroma Bit features (right side).

https://doi.org/10.1371/journal.pone.0289881.g006
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We used only Mordred features and Aroma Bit features for this task because the prediction

performance of molecular fingerprints and the performance of the Mordred features were sim-

ilar in the previous task. As expected, we find different prediction performance depending on

the number of groups in the clustering step. The best performing results are obtained with 6

clusters, where we found F1 scores of 0.70 and 0.65 for Mordred features and Aroma Bit,

respectively. True positive rate is 0.83 & 0.76 for Mordred features and Aroma Bit, respectively.

With other numbers of clusters, the performance deteriorated. This is pictured in Fig 6(B).

Among all different cluster configurations, we didn’t find a statistically significant difference

between the performance obtained with the two feature sets.

Qualitative analysis of the feature clustering

In this final comparative task, we performed the analysis of the cluster composition of the 114

aroma molecules. Hierarchical clustering was performed on the PC components of both

aroma-bit features (5 PCs >90% variance) and Mordred features (35 PCs> 90% variance) and

is illustrated in Fig 7(A) and 7(B) respectively. This is not to be confused with the clustering of

odor descriptor groups in the previous task. Here, we cluster the feature space of the predic-

tors, not the output space of the labels. An optimal number of 5 clusters was selected based on

the “Elbow” curve method (representation of intra-cluster variability as a function of the num-

ber of clusters), as reported in Fig S4 in S1 File.

We denote the percentage of an odor descriptor in a cluster as the ratio between the number

of samples inside the cluster that present this odor descriptor over the total number of samples

that present this odor descriptor. For example, a percentage of 80% ‘sweet’ in cluster 1 would

mean that 80% of the ‘sweet’ samples are gathered in cluster 1. Fig 7 depicts the radar charts of

the distribution of odor descriptor percentage values for the 7 most frequent odor descriptors

across the 114 aroma molecules. There is a total of 55 ‘sweet’ and 52 ‘floral’ samples among the

114 aroma molecules in our original database. We found that 32. 73% sweet and 30.77% floral

odor descriptors are in the 3rd cluster for Aroma Bit features in Fig 7(C), and 40% sweet and

42% floral are in the 4th cluster for Mordred features in Fig 7(D). However, notice that all the

percentages of the descriptors for sweet, floral, woody, fruity, fresh, and citrus, are high in the

4th cluster for the Mordred features. It is more difficult for a predictive model to differentiate

the descriptors inside of this cluster. Also, notice that the observation for the green, woody,

and fruity odor descriptors appear in a common cluster (5) with the Aroma Bit features. Quali-

tatively, the Aroma Bit features seem to present better clustered profiles compared to the Mor-

dred features based on the percentage of the odor descriptors. This was also demonstrated by

the predictive models in our first task, as we obtained true positive rates of 83% and 60% for

sweet and floral odor descriptors respectively using the Aroma Bit features, compared to 49%

and 36% for the Mordred features.

Conclusion

We experimented with different featurization methods of olfactory stimuli for predicting not

only the specific odor impression but also the odor descriptor group of aroma molecules. Our

aim was to compare the predictive performance in terms of different sensing and feature data.

We found that the QCM-based Aroma Bit sensor features, and the mass spectrum features

gave similar prediction performance of odor impression. Also, they both significantly outper-

formed molecular descriptor data (bit-based path descriptors fingerprint, count-based Morgan

fingerprints, Mordred features) in the same task. This result is encouraging as 1) contrarily to

molecular descriptor data, QCM-type and mass spectrum features can be used with chemical

mixtures as well, and 2) QCM-based sensors are relatively inexpensive and easy to use. We
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also analyzed the cluster composition with Aroma Bit and Mordred features and found that

the Aroma Bit clusters gathered less olfactory notes in the same cluster as compared to the

Mordred features, which makes it easier to distinguish between target and non-target odor

impressions.

We provide the dataset of QCM-type features we created for our aroma molecules and

encourage researchers to conduct additional comparative experiments. We hope these find-

ings will help researchers experiment with new types of features for olfactory representation

and build new datasets of odor samples. Importantly, we hope to see datasets investigating the

sensory attributes of chemical mixtures in the food, perfume, or other related industries, as

this would be a new milestone for olfactory research.

Supporting information

S1 Data. Contains the aroma molecules with their CAS number, odor descriptors, aroma

bit features (average of 3 measurements) and 80 aroma molecules with mass spectrum.

(XLSX)

Fig 7. Hierarchical clustering of the Principal Components of aroma molecules based on (a) Aroma Bit and (b) Mordred features. In

the top figures (a) and (b), each number indicates the index of the molecule (see S1 Data). We analyzed the distribution of the percentage

of the 7 most frequent odor descriptors across the 114 aroma molecules in (c) Aroma Bit & (d) Mordred features. For example, 32.73%

sweet in cluster 3 using aroma bit features would mean that 32.73% of all sweet samples are gathered in the cluster 3.

https://doi.org/10.1371/journal.pone.0289881.g007
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S2 Data. Reports the mean F1 & recall scores for 93 & 83 Odor descriptors respectively.

(XLSX)

S3 Data. Reports the mean F1 & recall scores for 93 & 83 Odor descriptors respectively.

(XLSX)

S1 File. Reports the hyper-parameters search space, odor descriptor group, distribution of

clusters among 114 aroma molecules and the optimal number of clusters suing Elbow

curve method.

(PDF)
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