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Metric Learning — Two Key Concerns

(1) Discrete class-based learning

Class-based model Perceptual model Perceptual model
- concept - visual appearance

Perceptual metric trained on relative similarity comparisons between objects - Is
object “x” more similar to object “y” or object “z” ?
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Metric Learning — Two Key Concerns

(2) Annotation-intensive
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Reduce dependence on human guidance
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Batch-Mode Active Metric Learning Framework

~ L

Initial pool AL round #1 AL round #2 AL round #k
selection

Unlabeled triplets - Labeled triplets M, Perceptual metric after training round #k



Smart Labeling — All triplets are not equally important.
Identify informative triplet

Uncertainty sampling: Identify subset S of triplets about which the current model (@) is
highly uncertain in predicting its order: d(p(xi,xj) ~ dg(x;, Xx)
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[Active learning strategies are effective when subset size is one ]




Smart Labeling — Diversity is necessary
Integrate informativeness and diversity

1. Select an overcomplete set of informative triplets

S = argmaxscy s|=kH(S); k >Db

2. Pick b diverse triplets using farthest point sampling (FPS)

S* = aT'nglX{ti’tj}Cs qu(ti' t])
forn=3,..,bdo

S*¥ e« S*U {argmaxteg\s*argmint'eg*,ﬁqb (¢ )}
end

How to define pg, (ti, tj)?
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Smart Labeling — Diversity is necessary
Integrate informativeness and diversity

pp(t,t") = H@X)XH(t")Xxd(t,t")
| ] | J

Informativeness Diversity

Gradient distance: Each triplet is represented by expected gradient of loss function with
respect to last layer of model parameters: g(t)

N_ 4,90 g(t)
d(t,t') = 1= (o igen

Centroidal distance: Each triplet is represented by centroid of the embedding of three
objects

1
d(t,t") = lle(®) — eIl c(t) =5 (¢0x) + P (x;) + p(xx))




Smart Labeling — Diversity is necessary
Integrate informativeness and diversity

Euclidean distance: Triplet is represented by concatenated object embedding

o (xi, x5, %) = d(x;) D d(x;) B P(xy)
1
Aty = ) SIeE) - p)]
ye{ijk,ikj}

Oriented distance: Distance between the anchors of two triplets + cosine distance
between resultant vectors Xi

d(t,t") = dg(x;,x;) + (1 — (F(0), 7))

7(t)



Test Accuracy

e All variants of decorrelated AL performs better than random
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Results on Different Datasets
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Our method achieves higher performance gain over random
and the US method with larger subset sizes or initial pool
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Less than half (39%) as
many labeled triplets
needed by our method

Source code: https://priyvadarshini-k.com/publications/
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