Enhancing Haptic Distinguishability of Surface Materials with
Boosting Technique
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Discriminative Haptic Feature

Use multimodal data — haptic

and visual

Need high-end devices to
record data
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Data Processing
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Overview of our algorithm

Dimension reduction using DFT321
technique

Feature extraction using Constant
Q-factor Gaussian filter bank

Enhancing distinguishability b/w
haptic textures using BoostMetric




Metric-Based Feature Transformation

Problem statement — Given a set of signals {X;};=1 € R? and their class labels, our goal is to learn a
feature transformation matrix M € R{PXD} such that in the projected space, signals from the same class

form a compact cluster

c
Optimization problem ~ min D exp(—(dy, (x,,x,)—dy (x,,x,))) + vIr(M)
r=1

The learned matrix rescales input features to form well-separated compact clusters of different classes.

C. Shen et.al. NIPS -2009 4
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Results - Classification
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Performance of K-NN classifier in Euclidean
(blue) and BoostMetric (green) space as a
function of the feature dimension.
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performance gain in classification accuracy in embedded
space (orange) over Euclidean space (blue) for different
classifiers.
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Features are projected onto 2D space using t-SNE plot

Results — Clustering
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Conclusions

Hand-crafted spectral features (CQFB) enables better discrimination of real-world surface textures as
compared to raw acceleration signals.

The boosting-based linear transformation of the CQFB features improves separability between haptic
signals.

Limitation — The linear metric-based feature transformation learned on class-label supervision does not
capture the human-perceived dissimilarity well.



