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Abstract

Research on knowledge graph completion (KGC)—i.e., link prediction within
incomplete KGs—is witnessing significant growth in popularity. Recently, KGC
using KG embedding (KGE) models, primarily based on complex architectures
(e.g., transformers), have achieved remarkable performance. Still, extracting the
minimal and relevant information employed by KGE models to make predictions,
while constituting a major part of explaining the predictions, remains a challenge.
While there exists a growing literature on explainers for trained KGE models,
systematically exposing and quantifying their failure cases poses even greater
challenges. In this work, we introduce two synthetic datasets, FRUNI and
FTREE, designed to demonstrate the (in)ability of explainer methods to spot
link predictions that rely on indirectly connected links. Notably, we empower
practitioners to control various aspects of the datasets, such as noise levels and
dataset size, enabling them to assess the performance of explainability methods
across diverse scenarios. Through our experiments, we assess the performance
of four recent explainers in providing accurate explanations for predictions on
the proposed datasets. We believe that these datasets are valuable resources for
further validating explainability methods within the knowledge graph community.

1 Introduction

Knowledge Graphs (KGs) have achieved significant attention in the research community due to
their ability to facilitate efficient knowledge retrieval and reasoning [16]. A KG is typically defined
as a set of triples, {(head-entity, relation, tail-entity)}, where each triple represents a fact,
for instance, (Insulin, regulates, blood-sugar). In this representation, entities correspond
to nodes, and relations correspond to directed edges. KGs have been used in a wide variety of
applications like recommendation systems [23, 39], question answering systems [34, 1], natural
language processing tasks [18, 26, 10], and drug discovery[22, 17]. In this context, KG Completion
(KGC) is a key research focus, involving the prediction and classification of missing facts in
incomplete KGs. Recent advancements are linked to the emergence of KG embedding (KGE)
models using powerful neural networks[5, 32], and achieving remarkable performance. However,
their increasing complexity poses a challenge: the need to understand the KG information they
rely on for predictions. That is, there is a growing interest to explain the predictions generated by
these models [9]. Explainability is critical not only for understanding the model’s decision-making
process but also for ensuring trust, fairness, and accountability in real-world applications [9].
Existing work on explainers tailored for KGC [27] mainly focuses on extracting the most relevant
facts that have the largest influence on a prediction. However, they still have several limitations,
such as high computational requirements (making them impractical for large-scale KGs); con-
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strained search spaces (limiting their ability to uncover complex explanations); and usage of
heuristic methodologies (which may not always guarantee robust and reliable explanations).
The complexity of KGE models and KG datasets poses challenges for explainer methods and
complicates the analysis of their strengths and weaknesses. Quantitatively evaluating the
effectiveness of explainers and identifying their failure-cases is even more challenging; e.g.,
explainers may struggle with predictions reliant on indirectly connected KG links. Synthetic
datasets stand out as invaluable assets in this regard, offering a controlled data generation process.
This facilitates a meticulous assessment of explainers’ performance across diverse scenarios, often
unattainable with real-world datasets due to their inherent noise and complexity.
This paper introduces two synthetic datasets, FRUNI and FTREE, which are crafted to manifest
the capabilities (or limitations) of explainer methods in scenarios where predictions depend on
indirectly connected links. These datasets have several tweakable parameters such as noise levels
and the number of entities. This flexibility allows for an evaluation of explainability methods
under various conditions. Our experiments focus on assessing the performance of the latest
explainers using these synthetic datasets. We aim to provide insights into the strengths and
weaknesses of current explainability techniques in the context of KGC.
In summary, these are our contributions. (i) We propose two new synthetic datasets, FRUNI and
FTREE, engineered to assess the efficacy of explainers in correctly making predictions that rely on
indirectly connected links. (ii) We evaluate the performance of the latest explainers in providing
explanations for predictions on the introduced datasets. (iii) We open-source the datasets with
the goal of fostering further research in validating explainability methods in KG tasks.

2 Background

A knowledge graph (KG) is a structured representation of information consisting of entities
and relationships typically denoted as triples or facts (h, r, t), where h is the head entity, r is
the relationship, and t is the tail entity. Mathematically, a KG is defined as a set of triples
T = {(h, r, t)}, where h and t belong to the entity set E , and r belongs to the relationship set
R. Knowledge graph embedding (KGE) is the task of learning embeddings for entities h ∈ E
and r ∈ R relationships, denoted as eh for entity h and rr for relationship r, where eh, rr ∈ Rd,
with d being the embedding dimension. Knowledge graph completion (KGC) is the task
of predicting missing or incomplete triples in a KG. Given a KG T and a partial triple (?, r, t),
(h, ?, t) or (h, r, ?), the goal is to predict the missing entity/relationship. KGC aims to find:

h′ = arg max
h∈E

P (h|r, t), r′ = arg max
r∈R

P (r|h, t), t′ = arg max
t∈E

P (t|h, r), (1)

where P (h|r, t), P (r|h, t), andP (t|h, r) are conditional probability distributions. In essence, KGC
focuses on head, relation, or tail prediction.
Interpretability or explainability in KGC refers to providing insights into why a particular
prediction was made by a KGE model. It involves identifying the minimal and relevant information
from the KG that contributes to a prediction, which can be formulated as a subset of triples
(h, r, t) that collectively affect the prediction. Rossi et al. [27] introduces the concepts of necessary
and sufficient explanations for a prediction. A necessary explanation is a subset of triples from
the KG that, when removed, causes the prediction to change; and a sufficient explanation is a
subset of triples that, when added to the KG, ensures the correctness of the prediction.

3 Related work

In this section, we review the relevant literature on explainable knowledge graph completion.
Knowledge Graph Embeddings (KGE) models have been successfully used in KGC tasks.
They are categorized into four groups: translation-based [3, 11]; tensor decomposition-based
[36, 31]; Graph Neural Networks (GNNs) based [28, 24, 32]; and Transformers based [37, 18, 5].
Generally, more complex models achieve better performance but are less interpretable. For
detailed overviews of KGE models, see [12, 33].
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Knowledge Graph Reasoning has also been used to tackle KGC. These methods typically
integrate logical rules or leverage path information within the KG to facilitate informed predictions.
Techniques include random walks [14, 8], variational inference [4], and reinforcement-learning-
based path search [35, 6, 42]. While more interpretable, these methods often suffer from
higher computational complexity and reduced performance. Recently, Zhu et al. [43] focused on
enhancing their scalability. For a comprehensive overview of KGR approaches, consult [16].
Post-hoc explainability methods in KGC, which aim to shed light on how black-box KGC
models generate link predictions, have recently gained attention [25]. Here, we focus on local
explanations, i.e., explaining the prediction of a single KG triple. Many of these approaches
originate from GNN literature, including methods generating attention maps [41], highlighting
the KG triples that had the most significant impact on a particular prediction; and those finding
(soft) masks on the edges and nodes [38, 29, 20]. For an exhaustive survey, see Longa et al. [19]
or Li et al. [15]. However, few works offer general-purpose KGE explainability methods. Some
use influential functions [13, 25], data perturbation [40], or adversarial attacks [2]. Notably, Rossi
et al. [27] recently proposed Kelpie. Although it represents the current state-of-the-art, it still
faces challenges like high computational complexity and limited search space.
To evaluate Explainable AI approaches for KGC, the selection of an appropriate dataset is of great
importance. Previous research mostly used established KG datasets like FB15k [3], WN18 [3],
FB15k-237 [30], WN18RR [7], and YAGO3 [21]. However, the inherent complexity of real-world
KGs complicates the identification of failure cases in the explanations. Synthetic datasets can
play a critical role in this regard, as they can be carefully designed to control various facets
of the KG. Unfortunately, they are scarce. To the best of our knowledge, the UserItemAttr
dataset, introduced by Zhang et al. [41], is the sole synthetic KG available. It emulates user
purchase decisions based on item attributes. Nonetheless, we need more synthetic datasets that
can simulate different scenarios and foster robust research within the KGC community.

4 Proposed synthetic datasets

In this section, we describe the proposed synthetic datasets designed for the evaluation of
explainability methods in the context of KGC. We would like to highlight that while our focus
is on KGC, these datasets can find utility in other tasks such as entity prediction. Each of the
datasets can be represented as a set of entities E , relations R, and triples T . Alternative, they
can be described as a G = (V, E), i.e., as a set of nodes V an edges E .
For every dataset proposed, we offer a semantic example to illustrate the meaning of its entities and
relations. Furthermore, we provide a mathematical formulation of the generation process in the
form of an algorithm in App. A. Additionally, we describe the hyperparameters that practitioners
have the flexibility to manipulate. The code for both generating and visualizing these datasets
can be accessed at https://github.com/SonyResearch/synthetic_knowledge_graphs.

4.1 FRUNI dataset

The "Friends and Universities" (FRUNI) dataset comprises Nu university entities, categorized into
two types: uniF and uniI. Two illustrative knowledge graph examples, each centered around one
of these university types, are depicted in Fig. 1. In this dataset, every university is associated with
exactly two student, also represented as entities. Consequently, each university is linked to two
triples of the form (uni, enrolls, student). Furthermore, each student has K ∼ Poisson(λf)+1
friend entities, leading to triples of the form (student, friendOf, friend).
Importantly, we know that Nf universities are of the type uniF, which actively foster friendships
among students’ friends. In other words, every friend of a student becomes friends with all the
friends of the other student from the same university. This arrangement generates triples of
the form (friendA, friendOf, friendB). It is important to clarify that friendA and friendB
cannot both be friends of the same student. The remaining Nu − Nf university entities, denoted
as uniI, impose isolation among the friends of the students, thus no facts exist among them.
The rationale behind this design choice is to require a two-hop reasoning process to deter-
mine whether two friends are connected. First, we need to confirm that they are friends
of different students within the same university. Second, we must determine whether the
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Figure 1: Par of the FRUNI KG containing the facts from
a uniF and a uniI university entities.

Figure 2: Example of a family with
the root entity progenitor.

university promotes friendship or isolation. Consequently, an explanation for the triples
(friendA, friendOf, friendB) must include information about the university to which the
friends are connected through their respective students.
Furthermore, universities in this dataset have the capability to collaborate, with this collaboration
occurring randomly with probability αu. It is important to note that such collaborations result in
triples like (uni1, collabWith, uni2) but do not impact the remainder of the knowledge graph,
they just introduce noise. For a formal description of the generative process, please refer to Alg. 1
in App. A. In the following, we will elaborate on the elements of this synthetic knowledge graph.
Entities. There are four distinct types of entities: universities fostering friendship (uniF) or
imposing isolation (uniI), students (student), and friends (friend).
Relations. We define three types of relations: 1) friendOf: represents the friendship
relationship between students and friends. This relation can only appear in facts with head is
student or friend and tail entity is friend; 2) collabWith: denotes collaborations between
universities. This relation exclusively appears in facts where the head/tail entities are of type
uni; 3) enrolls: signifies the association between students and universities. This relation is
found in facts with the head entity of type uniF or uniI and the tail entity of type student.
Hyperparameters. The dataset incorporates four essential hyperparameters, each governing
distinct aspects of the dataset: Nu is the total number of university entities; λf is the mean of
the Poisson distribution that models the number of friends of each student; αu is the probability
of collaboration between universities, which determines the expected number of triples containing
the collabWith relation, expressed as αu × N2

u; and, Nf is the number of universities that
foster friendship, resulting in triples between friend entities of students.
It is worth noting that certain facts depend solely on the entities, such as (uni, collabWith, uni),
while the existence of triples like (friend, friendOf, friend) is dependant upon the type of
university to which the friends are affiliated. A robust explainer should capture these distinctions.

4.2 FTREE dataset

The family tree (FTREE) dataset comprises Nt isjoint family trees. An illustrative example of
a family tree is depicted in Fig. 2, where progenitor represents the root entity of the tree
structure. The progenitor entity has B ∼ Poisson(λb)+2 offspring, each of which corresponds
to an entity kid. These entities form triples of the form (progenitor, ancestorOf, kid).
In this dataset, every lineage, defined as a distinct branch within a family tree, spans a depth of
L ∼ Uni({1, . . . , Nd}) generations, with each generation yielding a single offspring. For instance,
if Nd = 2, some lineages originating from progenitor contain information up to the level of
children, while others extend to the grandchildren, as exemplified in Fig. 2. Regardless of lineage
depth, all triples arising from these lineages consistently exhibit the ancestorOf relation.
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Table 1: Statistics of the datasets.
Entities Relations Facts

FRUNI 5000 3 4974
FTREE 524 3 519

Table 2: Performance in terms of MRR of
the trained KGE models.

ConvE ComplEx TransE

FRUNI 1.0 1.0 1.0
FTREE 1.0 1.0 1.0

For the last generation (the final node in the branch), we are aware of two crucial facts: they
possess a last-kid and they have a hobbie, e.g., tennis. The nature of their relationship
with hobbie varies according to L ∈ {1, . . . , Nd} and can encompass sentiments such as liking,
disliking, and so on. We shall denote these relationships as {sent-1, . . . , sent-Nd}. For example,
Fig. 2 shows the case for Nd = 2 leading to sent-1 and sent-2 relations. It is important to
note that this relationship depends on the length of the path traced back to the root entity.
Therefore, knowledge of the path length is indispensable for accurately predicting the relationship
for the triple containing the hobbie entity (which is a leaf node in the tree). In App. A, we
provide a formal description of the generative process in Alg. 2. In the following, we describe the
key components of this synthetic KG.
Entities. There exist four distinct types of entities. 1) The original couple, denoted as
progenitor, always serves as the root entity within each family tree. 2) Descendants, represented
as kid, function as internal nodes in the tree structure. 3) The last descendant, designated as
last-kid, 4) and hobbies, indicated as hobbie, both act as leaf nodes within the trees.
Relations. We establish 1 + Nd distinct types of relations within the dataset. ancestorOf
signifies a parent-to-child relationship. This relation manifests from progenitor to kid, from
kid to another kid, or from kid to last-kid. On the other hand, sent-i, for i ∈ {1, . . . , Nd}
indicates that a kid exhibits a particular sentiment (dependant on the depth) towards a hobbie.
Hyperparameters. The FTREE dataset incorporates three hyperparameters. Nt represents the
total count of family trees. λb represents the mean parameter of the Poisson distribution used
to model the number of children for each progenitor entity in the dataset. Nd denotes the
number of distinct relations of type sent. It also determines the length of the longest path from
the progenitor node to the leaves (last-kid or hobbie), which is set to Nd + 1.

4.3 Discussion

While it is true that these are two made-up examples and may not be very common in practice,
it is also very naive to assume that they will not happen. Thus, we should aim to build KGC
models and explanation approaches that are able to handle such types of KGs.

5 Experiments

In this section, we utilize the FRUNI and FTREE datasets to empirically assess the performance
of four recent explainers.
Experimental setup. We utilized the open-source code provided by Rossi et al. [27] 1 for
running the experiments. We integrated the proposed datasets and trained three different KGE
models: ComplEx [31], ConvE [7], and TransE [3]. Notably, we used the same triples for both
training and testing phases, as our primary objective is to assess the performance of the explainer,
not the performance capabilities of the KGE models.
Dataset. We conducted our experiments on two distinct instantiations of the proposed datasets.
Specifically, for the FRUNI dataset, we configured the following parameters: Nu = 1000, λf = 1,
αu = 0.0, and Nf = 500. On the other hand, for the FTREE dataset, we set the following
parameters: Nt = 5, λb = 30, and Nd = 2. A summary of dataset statistics is presented in
Tab. 1. The datasets created for these experiments are publicly available in our GitHub repository.
Explainers. Following Rossi et al. [27], we compare the following explainers: Kelpie [27],
Kelpie limited to single-fact explanations (K1), Data Poisoning [40], and Criage [25].

1https://github.com/AndRossi/Kelpie
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Table 3: MMR effectiveness of necessary (the lower the better) and sufficient (the higher the
better) explanations. Results for Criage and TransE are missing due to their incompatibility.

FRUNI FTREE
K1 DP Criage Kelpie K1 DP Criage Kelpie

Ne
ce

ss
. TransE -0.77 -0.78 - -0.89 -0.66 -0.88 - -0.86

ComplEx -0.65 -0.69 -0.46 -1.00 -0.91 -0.95 -0.87 -0.99
ConvE -0.78 -0.74 -0.62 -1.00 -0.89 -0.93 -0.67 -0.99

Su
ffi

c. TransE 0.83 0.83 - 0.83 0.61 0.61 - 0.61
ComplEx 0.82 1.00 0.70 0.82 0.87 0.95 0.74 0.87
ConvE 1.00 0.93 0.55 1.00 0.97 0.78 0.71 0.97

Table 4: Example of an incorrect (top) and correct (bottom) necessary explanation generated by
Kelpie.

Pred. to explain Necessary explanation
(kid-2-16-1, sent-2, hobbie-2-16) (kid-2-16-0, sent-2, hobbie-2-16)

(kid-2-16-0, ancestorOf, kid-2-16-1)
(kid-2-16-1, ancestorOf, lkid-2-16)

(kid-2-24-0, ancestorOf, kid-2-24-1) (kid-2-24-0, ancestorOf, kid-2-24-1)

Metrics. We evaluate the performance of the explainers based on the MRR effectiveness[27]
defined as ∆MRR, meaning the variation in Mean Reciprocal Rank (MRR). For necessary
explanations, smaller values of ∆MRR are indicative of better performance. This is because a
smaller ∆MRR signifies that the removal of the explanation triples from the KG G, followed
by retraining, results in a deterioration of performance. In contrast, for sufficient explanations,
larger values of ∆MRR are desirable. A larger ∆MRR indicates that adding the triples of the
explanations to a random head or tail entity effectively converts the prediction to the correct one.
Results. In Tab. 2, we present the performance of the KGE models in terms of MRR. Notably,
all models achieve a perfect score, indicating their capability to overfit the data. However, it
remains uncertain whether these models can accurately predict facts through proper reasoning.
In Tab. 3, we show the performance of the explainers in terms of effective MRR for both
necessary and sufficient explanations. We can observe variability in the scores among the
explainers. Criage consistently underperforms compared to others, while Kelpie, the state-of-
the-art method, outperforms the rest. In terms of KGE models, ConvE consistently outperforms
others. Nevertheless, it’s crucial to emphasize that achieving a high ∆MRR score does not
guarantee the model’s correctness in predicting ground-truth explanations. To delve deeper into
this matter, we examine in Tab. 4 specific instance of explanations for FTREE generated by the
best-performing combination of Kelpie with ConvE. Note that the necessary explanation for
(kid-2-16-1, sent-2, hobbie-2-16) fails to include all relevant facts up to the corresponding
progenitor entity. This limitation is expected as explanations in Kelpie are restricted to triples
containing the head or tail entity of the prediction. Yet, this observation underscores the need
for synthetic datasets that facilitate the assessment of failure cases.

6 Conclusion

We introduced the FRUNI and FTREE synthetic knowledge graphs to evaluate the performance of
explainers in scenarios where fact predictions rely on indirectly connected links. Our experiments
reveal some limitations of current explainability methods. We leave for feature work the design
and analysis of a KGE model that can perfectly solve the KGC task on the proposed datasets.
A model of this nature would help to dismiss the failure cases on the KGE model, and better
understand the effectiveness of explainability methods. We expect FRUNI and FTREE to benefit
the knowledge graph community, enabling researchers and practitioners to assess and improve
the explainability of KGE models, ultimately advancing the field of knowledge graph completion.
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A Data generation process

In this section, we provide a detailed description of the data generation process for the two
synthetic datasets introduced in this work, namely FRUNI and FTREE.

A.1 Data Generation for FRUNI

The data generation process for FRUNI is outlined in Alg. 1. In this context:

• We represent a uni entity as a single integer, denoted as i.
• For student entities, we use two integers, i-j, where the first integer signifies the

university i, and the second integer represents the student’s identifier within that
university.

• We denote friend entities with three integers, i-j-k, with the first two integers
referring to the university and student entities that the friend is connected to, and the
last integer (k) indicating the identifier of the friend within friends of student i-j.

Alg. 2 contains the data generation process for FTREE. Note that we identify a progenitor
entity with a single integer i. We identify the descendants with the integers i-j-k, the first
one corresponds to the correcponding progenitor, the second one the lineage branch j, and
the last one identifies the generation index within the lineage branch. We identify the last-kid
entity of a progenitor i and lineage j as i-j-lkid and the correcponding hobbie entity with
i-j-hob.

A.2 Data Generation for FTREE

The data generation process for FTREE is detailed in Alg. 2. In this context:

• We represent a progenitor entity as a single integer, denoted as i
• Descendant entities are identified by three integers, i-j-k, with the first integer corre-

sponding to the progenitor, the second integer representing the lineage branch j, and
the last integer indicating the generation index within the lineage branch.

• The last-kid entity of an progenitor i and lineage j is referred to as i-j-lkid,
and the corresponding hobbie entity is identified as i-j-hob.
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Algorithm 1 FRUNI generation process
1: Input: Nu number of universities; λf average number of friends per student; αu probability

of university collaboration; Nf number of universities that foster friendship
2: V = ∅ ▷ Initialize the set of entites
3: R = {enrolls, friendOf, collabWith} ▷ Create the set of relations
4: T = ∅ ▷ Initialize the set of triples
5: for i ∈ {1, . . . , Nu} do ▷ Iterate over the number of universities
6: V = V ∪ {i} ▷ Add uni entity
7: V = V ∪ {i-1, i-2} ▷ Add student entities of i
8: T = T ∪ {i, enrolls, i-j}2

j=1 ▷ Add triples connecting the uni to the students
9: for j ∈ {1, 2} do

10: Kij ∼ Poisson(λf) + 1
11: V = V ∪ {i-j-k}Kij

k=1 ▷ Add K friend entities of i-j
12: T = T ∪ {i-j, friendOf, i-j-k}Kij

k=1
13: end for
14: if i ≤ Nf then ▷ University i fosters friendship, add triples
15: T = T ∪ {i-1-k, friendOf, i-j-h : k ∈ {1, . . . , Ki1}, h ∈ {1, . . . , Ki2}}
16: T = T ∪ {i-j-h, friendOf, i-1-k : k ∈ {1, . . . , Ki1}, h ∈ {1, . . . , Ki2}}
17: end if
18: end for
19:
20: T = T ∪ {i, collabWith, j : uij < αu}Nu

i,j=1 with uij ∼ Uni(0, 1)
21: Output: V, R, T

Algorithm 2 FTREE generation process
1: Input: Nt number of family trees; λb average number of branches per family tree; Nd

number of different lengths of descendants
2: V = ∅ ▷ Initialize the set of entites
3: R = {ancestorOf} ∪ {sent-i}Nd

i=1 ▷ Create the set of relations
4: T = ∅ ▷ Initialize the set of triples
5: for i ∈ {1, . . . , Nt} do ▷ Iterate over the number of family trees
6: V = V ∪ {i} ▷ Add progenitor entity
7: Bi ∼ Poisson(λb) + 2
8: for j ∈ {1, . . . , Bi} do
9: Lij ∼ Uni({1, . . . , Nd})

10: V = V ∪ {i-j-k}Lij

k=1 ▷ Add Lij kid entities for family tree i and lineage j
11: T = T ∪ {i, ancestorOf, i-j-1}
12: if Lij > 1 then
13: T = T ∪ {i-j-k, ancestorOf, i-j-h : k ∈ {1, . . . , Lij − 1}, h ∈ {2, . . . , Lij}}
14: end if
15: V = V ∪ {i-j-lkid} ▷ Add last-kid entity
16: T = T ∪ {i-j-Lij , ancestorOf, i-j-lkid}
17: V = V ∪ {i-j-hob} ▷ Add hobbie entity
18: T = T ∪ {i-j-Lij , sent-Lij , i-j-hob}
19: end for
20: end for
21: Output: V, R, T
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