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What makes objects similar?

Customers Who Bought This Item Also Bought

« w0 s
. l JMEEYREA
<« AR
Jane E
C tte Bront
e iy 17 50

Middlemarch (Penguin The Picture of Dorian Gray Middlemarch (Wordsworth
Classics) (Dover Thrift
George Eliot OscarWiide > GeorgeEllot Wirdrwy

Paperback
$9.89 vPrime

iy 504 wirk ko 879
Paperback Paperback
$8.70 Prime $3.60 vPrime

Wildlife search Preference learning

Requires capturing humans’ notion of perceptual similarity
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Human supervision for metric learning

Does A taste more similar to B or C?
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{“yes’’,‘‘no”’,“‘can’t say’’}

* Less subjective * Annotation complexity
* Less inconsistent is huge - 0(n3)

* Easy for human
v X



Active metric learning (AML) — label smarter

> Goal —

* To learn an effective continuous perceptual metric using the minimum
possible annotated triplets

» Key insights —
* All triplets are not equally informative for the model

* A good model can be trained on much fewer high-utility triplets



Two stages of active metric learning

(1) Triplet selection - Choose a subset of most informative triplets to
annotate

(2) Model update - Train the model on the updated training set
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Which triplets are informative!

Existing work: use single-instance uncertainty-based informativeness

measure
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Batch AML — diversity is necessary

Our previous work: decoupled measures for informativeness and diversity

! !

Entropy Decorrelation
metrics

[Kumari, Chaudhuri, and Chaudhuri |JCAI2020]

Separate measures do not ensure optimal tradeoff b/w both criteria

We proposed joint entropy as a unified measure to jointly balance both
informativeness and diversity

H(S) = —[ p()logp(x)dx

How to define p(x) for a batch of triplet ?



Defining probability distribution

Priors

We characterized the probability distribution by 2"¢ order moments estimated
in distance margin space &; = dé(xi,xk) — dé(xi,xj) using dropout in neural

network

Maximum entropy principle — Least biased estimate of probability distribution
which best represents the prior state of knowledge is the one with the maximum

entropy
maximizeyy) — [ p(xX)logp(x)dx

s.t [ p(x)r;dx = m;

Joint probability density function, p(x) of a batch of triplets that satisfies 2"
order moment constraints and also maximizes the entropy is multivariate

Gaussian



Optimum batch selection

1
Maximum informative batch S* = argmax = 5 log((2me)? det(Gs))
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Monotone submodular optimization using greedy policy
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How to efficiently compute conditional entropy?

[Nemhauser et al 78]




Recursive computation of conditional entropy

Maximize conditional entropy

t;é — argmaxtkCU\Sk_l H({tk}lsk—l)

|77 || is the orthogonal projection onto span of triplet set Sy_;

At each step the triplet that is least correlated with the already chosen triplets



Results

72% reduction in annotation over Random
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All variants of decorrelated active metric learning perform better than the
Random and SoTA (BADGE)
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Retrieved images in the order of
increasing perceptual distance

>

Results

Random

Annotate randomly-
selected batches

Ours

Random

Ours

Our method gives better perceptual matches with query than randomly-
selected triplets at the same annotation cost |3



Takeaways

* Perceptual metrics can be effectively trained on far fewer examples if unlabeled
samples (triplets, in our case) are chosen intelligently for annotation

* Unified measure for informativeness and diversity is important for optimum
batch selection
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