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What makes objects similar?

Google Image

Requires capturing humans’ notion of perceptual similarity

Product recommendation

Wildlife search Preference learning

Clustering
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Human supervision for metric learning

• Less subjective
• Less inconsistent
• Easy for human

• Annotation complexity 
is huge - 𝑂(𝑛!)

Does A taste more similar to B or C?
A B C

{“yes”, “no”, “can’t say”}
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Active metric learning (AML) – label smarter

Ø Goal –

• To learn an effective continuous perceptual metric using the minimum
possible annotated triplets

Ø Key insights –

• All triplets are not equally informative for the model

• A good model can be trained on much fewer high-utility triplets
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𝜙! 𝜙" 𝜙# 𝜙$

Initial pool AL round #1 AL round #2 AL round #k

Labeled tripletsUnlabeled triplets

(1) Triplet selection - Choose a subset of most informative triplets to 
annotate

(2) Model update - Train the model on the updated training set

Two stages of active metric learning
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Which triplets are informative?

Existing work: use single-instance uncertainty-based informativeness 
measure

𝑆∗ = argmax
#⊂%

𝐻(𝑆) ="
%∈'

𝐻(𝑡)

Overestimates collective 
informativeness

="
%∈'

−𝑝()$𝑙𝑜𝑔𝑝()$ − 𝑝($)log 𝑝($)

Entropic measure
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In batch mode, correlation 
b/w triplets is a huge problem

Batch size = 1

Batch size = 200



Batch AML – diversity is necessary

Our previous work: decoupled measures for informativeness and diversity 

Entropy Decorrelation
metrics

[Kumari, Chaudhuri, and Chaudhuri IJCAI2020]
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Separate measures do not ensure optimal tradeoff b/w both criteria

How to define 𝑝 𝑥 for a batch of triplet ?  

We proposed joint entropy as a unified measure to jointly balance both 
informativeness and diversity

𝐻 𝑆 = −∫ 𝑝 𝑥 𝑙𝑜𝑔𝑝 𝑥 𝑑𝑥



Defining probability distribution

We characterized the probability distribution by 2nd order moments estimated 
in distance margin space 𝜉& = 𝑑'( 𝑥), 𝑥* − 𝑑'( (𝑥), 𝑥+) using dropout in neural 
network

Priors 

Joint probability density function, 𝑝 𝑥 of a batch of triplets that satisfies 2nd
order moment constraints and also maximizes the entropy is multivariate 
Gaussian

Maximum entropy principle – Least biased estimate of probability distribution 
which best represents the prior state of knowledge is the one with the maximum
entropy

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒, - − ∫ 𝑝 𝑥 𝑙𝑜𝑔𝑝 𝑥 𝑑𝑥

𝑠. 𝑡 ∫ 𝑝 𝑥 𝑟)𝑑𝑥 = 𝑚)
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Monotone submodular optimization using greedy policy

Optimum batch selection 

Optimization is NP-hard

𝑆∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
#⊂.!
# /0

=
1
2
𝑙𝑜𝑔( 2𝜋𝑒 0 det 𝐺# )Maximum informative batch

Covariance 
matrix

𝑡*∗ = 𝑎𝑟𝑔𝑚𝑎𝑥&"⊂%\#"#$ 𝐻({𝑡*}|𝑆*23)

𝑆*23 𝑈*\𝑆*23𝑡*

𝑆* = 𝑆*23 ∪ {𝑡*}

𝑆4 = ∅

𝑓𝑜𝑟 𝑘 = 0,… , 𝐵 − 1

[Nemhauser et al 78]

How to efficiently compute conditional entropy?
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Recursive computation of conditional entropy

log UV
det 𝐺#"#$ ∪ &

det 𝐺#"#$

𝑡*∗ = 𝑎𝑟𝑔𝑚𝑎𝑥&"⊂%\#"#$ 𝐻({𝑡*}|𝑆*23)

Maximize conditional entropy

0𝑢% #

is the orthogonal projection onto span of triplet set 𝑆*23W𝑢& (

At each step the triplet that is least correlated with the already chosen triplets
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Results

11

All variants of decorrelated active metric learning perform better than the 
Random and SoTA (BADGE)

72% reduction in annotation over Random
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Ours using 
28% triplets

Random using 
100% triplets

BADGE using 
50% triplets

Training rounds



Results
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33% reduction in 
annotation over Random

60% reduction in 
annotation over Random

35% reduction in 
annotation over Random

• Wide applicability across different 
modalities and dataset sizes

• Performance gain increases with 
increasing batch size



Results

Ours
Query

Query Ours

Random

Our method gives better perceptual matches with query than randomly-
selected triplets at the same annotation cost

Retrieved images in the order of 
increasing perceptual distance

Annotate randomly-
selected batches

Random
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Takeaways
• Perceptual metrics can be effectively trained on far fewer examples if unlabeled 

samples (triplets, in our case) are chosen intelligently for annotation

• Unified measure for informativeness and diversity is important for optimum 
batch selection

• Annotation effort can further 
be reduced if we learn the data 
selection policy dynamically

Future directions Machine Learning 
Model

Active 
Learning 

Gustatory

Vi
su
al

Haptic

Embedding

Modality 
Selection𝑤*

𝑤+
𝑤,• Choose not just informative 

samples but also informative 
input modality
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